
D:*O65 193 LRIZONA UNIV TU~~ QN DEfl~~~~ cOMPUflR~~~~~~ cE~~~~~~~~~~~~~~~~~~~ 9,2

R—*PLADIS R—TR—79—00 3LASSIFIED

I’ ADA
D8~~.9a

n . 1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

10
~~~~~~~ ~~

L ~ 3I5 112 2
I~~~ 3 5L I.. 2 0

~~~~~~

1ffl125

r ~~~~~~~~~~~~~~~~~~~~~
-

~
.

-

,
--: -

.~~ ~ ~~ ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
IWIE4:

~~~~~
F

-,

- VI

~ ‘
4

~
V V V

V
V

VV

~~~~~~1~~~
V 

V~~~V V V V 
V

I
~~~~~~

~~~~~~ ~~~~~~ 

______ 

~~~ 

—

~~~~~~ 

‘i
~ 

~ ~~ 

~~

___________ ~~~ ~ ~~ _L7~ ,~ —.

V V4 ’ V V V 
•V V~~ 

4 V 
~~~ V V ~ :, &-:‘ ~ V~ V~~

V ; V

~~t ~kcV ~~~~~~ -

‘~~~ ‘ ~ _ J ~~~~~~~~ ~
V V V

V ~V V V V
VI4 & V 4 l ~~ VJ V VI ~ ~~~~~~~~~~~~~~~ .~~~J ; .* i
.
~~ :‘~W: ~~ k

be t
~

ent

_ _

_

_ _

_

_
C..)

..ç
/ _____

~~
‘
~~~‘- ‘~~~ ~V ‘V ”~ ; V ,  

/ - -. V~~V -~:. 
V~~~ ; V , V 

V 
~~~~~~~~~~~~~~~ ,V VI..J.J ~~~~~~ I 

.~

V VV

: i~It~
V V~~~~~~~~~~ ;V

V
~~~~~~~

- , 
~~~~~~~~~~~~~ 

V ’~~~~~
V

V V
V V V 4

4

V~~~

‘1

-

I

~
I~~~~~~

j

4
444~ ~~~~~~~~

V

V~~
‘!l” V

~ 4 4 ~~~V
:

V
.
.
~~~~~ V V

~ 4 4

F ‘~ 

4. 
4
) 

4

V V

2;.

4 ~~~~~~~ ~~~ •
V 4

V 
V 4 ~ J/ V 4” ‘i.: V~j  ‘•

~~~‘ 
‘
~~~;:i.~ ;’ V

l L~~J;~4 4)&V

- -



SECIj N~ T ,  L A SSIFICAII O P4 OF THIS PAGE () 4 ~,.n 1) .) . l~n te : ed )  V

~~~~EPORT DOCUMENT~~~~~.~’AGE READ INSTR U CTIONS
BEFORE COMPLETING FORM

3. RECIP IENT ’ S C A T A L O G NUMB ERI. RC

~~~~
i

~

R 

_ _ _ _ _~ F SR~TR. 7 q — 9J~ 
GOVT ACCESSIO N NO.

4. TIT LE~~~~~~~
--

~~~~
-
~

S0FT~ ARE T
5 TYP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~/ERIFICATION , 

HROUGH VERY HIGH -LEv EL 1 ~~~~~~~~~~~~~ ~~~~~
~~~~~~~~~~~~~~ .~iIrTu

7. AuT~~OR (a) ______

_
I

_ _ _ _ _ _ _ _

~~~FOSR- -78
“ ‘ Richard J .~~~rgass

9. PERFORMING O R G A N IZ A T I O N  NAME AND AOI.)RESS 10. PROGRAM EL..~~~~~~T. PROJECT ,
A R E A  & W

~~~~~~ ?I I! NUMB ERS
The Univers i ty of Arizona

_ _ _ _ _ _

Department of Computer Science
V Tucson , Arizona 85721 _ _ _ _ _ _ _ _

II. CONTROLLING OFFICE NAME AND ADDRESS .2.Z. REPORT DATE

Air Force Of f i ce of Scient i f ic Research/NM _ _ _ _ _ _ _

.•W~
_

NUN . WV PA GESBoiling AFB , Washington , DC 20332 _ _ _ _ _ _ _ _

IA. MONIT ORING AGENCY NAME 6 AOOR ESS(i(dif~e,.nC Irem Con rollIn~ OFFice) 15 SE CURITY CLASS.

UNCLASSIFIED
IS.. DE CLASSIF ICAT ION/DOWNGRADING

SCHEDULE

15. O ISTR IOU TION STATEMENT (oF this Report)

Approved for publ ic release; d is t r ibut ion u n l i m i t e d .

17. DI STRIBUTION STATEMENT (of (he abatract •nt.red In Block 20, ii different iron, Report)

le. SUPPLEMENTARY NOTES

19 K EY WORDS (Conlinue On reverse side .1 nece s sary end Identif y by block number)

N

2Q A BSTRAC T ‘Continue o~ raI-era• aid. if nece s sar y and ider,f,iy by block numbe r)

~~ A semantics of a s ignif icant fragment of APL has been constructed and is
s u m m a r i zed . i i~~ èct~ o n L ~~~This semantics has been used to construct an
implementa t ion of Lhe fragment of APL and part of the implementation has
been ver i f i ed.~~ This work is summarized in Section 2. V

L_ 7 This research progran ee— been~ moved from the Univp~&~.~~~ of Arizona to
Virginia Polytechnic Inst,~4~a.t~ and State Univ Q.r~s.it As a resul t of this
move , the computj~~ serv[r~es I1s~~~j for t h i s software have been changed

~~~ 
FORM L. O V: 1 V

~~V I J AN 73 UNCLASSIFIEDLj 1 .1. ~ 
sEcUnIr’r C L A S S I F I C A T I O N  OF Ti l l S  P A G E  (Ith.n 0...

‘
4— 

V

V_

~

V_ V V_— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2 4 _V ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

SICUN Y Y C LA ~~~I P I CATI ON OF THIS PAGE(I4hw Daie EnI.r.d) V

20 Ab~ t.racL conLinued .

~~from a DECsystem—l0 to an IBM system 370/158. Although there were some
difficulties,~h~t concern the physical representation of the programs,
this experience justifies the claim th~tl~th~ software is substantially
machine independent. The current state of the soft—ware and some of the
problems encountered in the move are described ±1l-S-s~-ttoo~5.

The starting point for the construction of an APL verifier is an
incremental assertion synthesizer that was written at the Univ~~~~t~r~~f
Arizona,as the dissertation of Dr. Dianne E. Britton .

The next step in the research is to complete the verification of
the first part of the APL implementation . When this is completed , the
work will branch into two cooperating projects. One of these projects
is to complete the semantics and implementation of APL. The other is
to derive the rules of inference for the APL primitives that have been
defined and to work with the verifier to extend it to a more powerful
verifier. AfLer the semantics of APL are completed , the verifier will
be further extended.

4~..

UNCLASSIFI ED
SECUR ITY CLASSIFICATION OF THIS PAGE (Wb.R D.ta EnI.,.d)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

FINAL SCIENTIFIC REPORT

Grant AFOSR-78—3499

Richard J. Orgass

October 10, 1978

Technical Report No. APLAD15

AIR FORCE OFFICE OF s:IENTIFIC RESEARCH

Boiling Air Force Base
Washington , D. C. 20332

AIR FORCE OFFICE OF SCIENTIFIC I:V
V
~~~~. ~~~~~~~~ ~~

NOTICE OF TPANSM ITTAL TO r~
This ~~~~ ~cal report  hU~ ~~

V : ( / 4 ~ r.V , . 4j ,~~~
•V
~~

4
~~ rind is

approv.  .~~~r p sN.’c reler~so 
V I A ~~ Ai~ l~~

)—i2 (7b ) .

f 

. 
Distr i~~ ~~ is ux,lio~ited.
A. D. BLuSE
T.chuiaal ID or~atiO~ Offloer

UNIVERS ITY OF’ ARIZONA
Department of Computer Science

Tucson , Arizona. 85721

79~~~~~~5
_

008



-- V -
V_ _ _  -

~~~~~~~~~~ V V

TABLE OF CONTENTS

0. Over-view 1

1. Semantics of APL 2

2. A Verified Implementation of APL 6

3. Transfer of Data Files 11

4. Transfer of APL Work.spaces 13

5. Status of Programs at Virginia Tech 16

6. Namespaces for APL 21

7. Personnel and Activities 23

8. Publications 24

9. References 26

10. List of Attachments 27

Appendix I. Implementation of Simple Expressions

W~ tte SQC6CI’ Ej V

g~~
3ictiVi% 0

..

,

: _ _ _ _ _ _ _

-

1.

0. OVERVIEW

The overall objective of this research program is to provide a
set of tools that can be used to verfiy substantial .APL programs and
to provide a verified Implementation of APL that is capable of correctly
executing verified APL programs. Before the grant began a prototype
verifier was constructed and this work defines the direction of
verification work. Continued work on verification depends on the
availability of a formal semantics of APL and, therefore, during this
research period attention was directed to work on the semantics and
implementation of APL.

A semantics of a significant fragment of APL has been constructed.
This work is sumearized in Section 1, below. This semantics has been
used to construct an implementation of the fragment of APL and part of
the implementation has been verified. This work is summarized in
Section 2 below.

This research program has been moved from the University of V

Arizona to Virginia Polytechnic Institute and State University. As a
result of this move, the computing services used for the software have
been changed from a DECsystem—l0 to an IBM System 370/158. Although
there were some difficulties that concern the physical representation
of the programs, this experience justifies the claim that the software
is substantially machine independent. The current state of the soft-
ware and some of the problems encountered in the move are described
in Section 5.

It was necessary to do some technical work to accomplish the
program transfer. The work on the transfer of APL workapaces,
summarized in Section 4, below, is a contribution to the general
problem of transferring APL workspaces across implementations. In
addition, some programs to transfer files from a DEC—10 to an IBM
machine were written (Section 3). These programs were also used to
transfer software from the University of Arizona to RCA Laboratories
by two faculty members who moved to the Laboratories.

The starting point for the construction of an APL verifier is an
V incremental assertion synthesizer that was written at the University

of Arizona as the dissertation of Dr. Dianne B. Britton. This program
and its supporting docimientation have been moved to Virginia Tech
and it appears to be working correctly.

The next step in the research is to complete the verification of
the first part of the APL implementation. When this is completed , the
work will branch into two cooperating projects. One of these projects
is to complete the semantics and implementation of APL. The other is
to derive the rules of inference for the APL primitives that have been
defin.d and to work with the verifier to extend it to a more powerful
verifier. After the semantics of APL are completed, the verifier will
be further extended .


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-V~~~
. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~~V~~~~~~~~~~~

2.

1. S~ (ANTICS OF APL

Substantial progress has been made in constructing a primitive
recursive semantics of APL. In particular, a semantics of essentially
all of the primitive scalar functions as well as simple and sub-
scripted assignment and a basic set of mixed functions has been
constructed . Perhaps more important, an orderly framework for con-
structing a semantics of the entire language as well as other languages
has been constructed.

The results of this work are described in the first two chapters
of a research monograph “A Primitive Recursive Semantics and Implemen-
tation of APL”. These two chapters have been issued as technical
reports using grant funds. These reports are Attachment 1 to the
present report and the external distribution list is Attachment 2.
Completed work as well as plans for completing the semantics of APL
are st arized below. Work on a verified implementation of APL based
on this semantics is described in Section 2, below.

The basic assumption of this work is that the semantics of a
programing language is given by exhibiting a valuation function that
maps well—formed expressions or statements of the language into their
values or meanings. In the present work, the well—formed expressions
are the expressions of APL as the language is used in a number of
implementations. The values of individual syntactical obj ects
(identifiers , primit ive function symbols , etc.) are defined to be
specific objects in some mathematical system. With these definition.
in hand, the values of expressions are defined in terms of the meanings
of the syntactical objects that occur in the expressions. Primitive
recursive arithmetic was selected as the mathematical system for the
meanings because it has a well developed proof structure and is adequate
for the present purposes. A more detailed justification for this choice
appears in Chapter I of the manuscript.

The fundamental data objects of APL, called APL individuals, are
scalars and arrays of type number, boolean and character. Since the
domain of individuals of primitive recursive arithmetic is natural
numbers, these APL individuals are mapped into natural numbers using
pairing finctions. The set of natural numbers that correspond to APt
individuals is the domain of the primitive recursive functions that are

V 
the meanings of the primitive function. of APL. Although the corre-
spondence between APL individuals and natural numbers is defined in
terms of pairing functions, the details of the representation are
such that it is very straightforward to implement APL individuals from
the definition of the mapping.

It is, in principle, possible to exhibit a primitive recursive
function that is the meaning of each of the primitive f unction symbols
of APL. However, for a number of reasons, it is desirable to directly
define a limited set of primitive functions and this limited set of



__________________ ________ - 

3

primitive functions is the subject of Chapter II of the manuscript.

The main motivation for directly defining only a limited set of
primitive functions is economy of definition and proof. Primitive
recursive definitions, even with a number of functions that facilitate
the definition of APL primitive functions, are quite long and compli-
cated. Once a reasonable set of APt primitive function. has been
defined in recursive arithmetic, these functions can be used to define
additional functions. The definitions of these functions in terms
of earlier functions are significantly shorter and, therefore, are
easier to understand and to confirm by comparison with existing imple-
mentations. When the APt program verifier is constructed, rules of
inference for each primitive function will be derived from the
definitions. The functions defined in terms of other functions have
the property that the derivation of their rules of inference will be
shorter because more powerful rules of inference are available.

The limited set of primitive functions directly defined in
Chapter II includes all of the primitive scalar functions of APL
except roll, deal (monadic and dyadic ?) and the transcendental or
circular functions (dyadic 0). The remaining primitive scalar functions
were included because their definition fits one of three patterns,
one for all of the manadic scalar functions and two for the dyadic
scalar functions. The mixed functions that are included are shape
and reshape (monadic and dyadic p), ravel and catenate (monadic and
dyadic ,), reverse (monadic •), subscripting ([]), index generator
(monadic t ) ,  membership (dyadic E), simple and subscripted assignment(
~

) as well as two supporting functions whoøe value is the cardinality
and type of their arguments. It is fairly straightforward to show
that a subset of these functions is sufficient to define all of APL
but this proof is not directly relevant to the present research because
our interest is in providing a definition that is easy to work with.

A brief discussion of the structure of the semantics of APL as
constructed in this work may be helpful.

A valuation function maps each identifier and each primitive
function symbol into its value or meaning. Most of the valuation
functions that have the set of APL expressions as their domain are not
of interest here because they do not assign the appropriate value to
expressions and, therefore, attention is restricted to admissable
valuation functions. Each adinissable valuation function assigns the
appropriate function as the value of a primitive function symbol and
an APL individual as the value’of an identifier. This APt individual
may be an ordinary data object (a scalar or array of type number,
boolean or character), a label or a function definition. Thus,
admissable valuation functions may only differ in the values that they

V 

assign to identifiers.

At a particular time, the state of an APL workspace is given by
the current valuation function. [This statement assumes that system
variables as defined in APL.SV, APLSF and other modern implementations
are available.) The state of a workspace is changed by executing an

t -.  _ _ _

~~~

I.
_ _

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.

assignment , calling a function and by completing the execution of a
line of a function. This state change corresponds to changing the
valuation function associated with. the workspace.

The semantics of the state changing operations is considerably
simplified if the valuation function itself is available in the
mathematical system used for the semantics as an object that is
easily changed. The valuation functions that are used in the present
semantics are defined within primitive recursive arithmetic.

This definition is completed in two essentially independent steps.
Strings of APt characters are not included in the domain of individuals
of recursive arithmetic but it is quite easy to represent them as
such. An APt individual is said to contain a string of APt characters
just in case it is a vector of type character such that each. component
of the vector is the representation of the corresponding character
of the character string. This mapping of strings of APt characters
into APL individuals that contain the strings is, in fact, a Godel
numbering of the strings and the domain of the valuation functions
that are used is the set of APt individuals that contain strings of
APt characters. With. this change in point of view, both the domain
and the range of valuation functions are objects of primitive recursive
arithmetic.

The definition of a valuation function may be divided into two
parts, a fixed part that is conmon to all valuation functions and a
variable part that is different for each. valuation function. The
fixed part of the definition of a valuation function is the part
that assigns values to the primitive function symbols of the language
and defines the value of expressions in terms of the values of con-
stituents of the expressions. The variable part of the clef tuition
is the part that assigns values to identifiers.

The variable part of a valuation function is defined by a symbol
table. A symbol table is a linear list of ordered pairs of APt
individuals. Each of these pairs consists of a left part and a right
part. The left part is an APt individual that contains an identifier
and the right part is the APt individual that is the value of the
identifier. In addition, each. symbol table is required to define
certain system identifiers. For example, in the first level semantics
(Chapter II), the system variables DPI’, OW, 010 and OCT must be
defined. In later extensions, additional system variables are added.

Restricted expressions are expressions that do not contain
occurrences of the assignment function symbol (+). The valuation
function for restricted expressions is defined by means of a function,
V. of two arguments. The first argument is an APt individual that
contains an APt expression and the second argument is a symbol table.
The value of this function V is the value of the expression when the
identifiers have the values given in the symbol table. It has been
shown that for each admissable valuation function there is a symbol

- - .

5.

table ~, such that V(X ,~~) is the value that the valuation function
assigns to the expression contained in X. Furthermore , for each
symbol table ~, there is an admissable valuation function that assigns
the value V(X ,t) to the expression contained in X. Therefore, the
two are equivalent definitions of valuation functions.

The set of simple expressions , whose semantics is given in Chapter
II is the set of restricted expressions with both simple and vector
assignment added. A function ~~~ whose argument is an ordered pair ,
cX ,t> , where X is an APt individual that contains a simple expression
and t is a symbol table and whose value is a second ordered pair,

such that u s the value of the expression contained in I and

is the symbol table after the expression is evaluated. This defini-

tion is adequate to give a complete semantics of this fragment of APt
and to construct an implementation of APt as described below.

The manuscript describing this semantics has been distributed
to a number of people that are actively engaged in constructing or
maintaining APt implementations and to others who are interested in
the semantics of programming languages. (The distribution list is
Attachment 2 to this report.] Comments received to date indicate
that there is substantial agreement with this definition of APL.
There is, however, one area of disagreement. In APLSF (DEC ’s APt) ,
the comparison tolerance (DCT) and fuzz are the same. That is, if a
real is within OCT of an integer, it is treated as an integer. In the
IBM implementations, OCT is a relative error when two reals are com-
pared and a real is treated as an integer if it becomes an integer
when a number of low order bits named by fuzz are set to 0. k satis-
factory resolution of this difference has not been identified at this
time.

The next step in the work on the semantics of APL is to define
the semantics of user defined functions. This will be done by
defining the value of a function variable in terms of an algorithm
for computing the value of the function and executing this algorithm.
This definition requires the addition of a few more details to the
structure of the semantics but no fundamental changes are anticipated.
This work is to be Chapter IV of the monograph mentioned above.

After the semantics of user defined functions is completed, the
remaining work on the semantics is to define the remaining primitive
functions of APt in terms of the functions that have been defined.
These function definitions are, added to the symbol table and the
result is a complete semantics of APL.

This work on the semantics of APt is closely related to the
implementation work described in Section 2, below. Chapters in the
research monograph alternate between describing the semantics and
verifying that the implementation is correct with respect to the
semantics.

--
~~~~~~~~~~~~~~~~~~~



r~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~V~~ V V V ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~ .

6.

2. A VERIFIED IMPLEMENTATION OF APL

A SIMULA—67 implementation of the APt fragment described above
has been conz ~ucted and a portion of this implementation has been
verified with respect to the semantics. The implementation has been
transported from a DECsystem—lO to an IBM System 370/158 and this
move provides considerable support for the claim that it is machine
independent. (The major difficulties associated with the move con-
cerned the physical representation of the program text not the text
itself.]

This implementation is to be described in the third Chapter of
the research monograph “A Primitive Recursive Semantics and Implemen-
tation of APL”. This chapter is, at present, incomplete and the
existing fragment of the manuscript is Appendix I to the present report.
The following remarks provide an overview of the implementation and
its verification.

The implementation was constructed to closely follow the structure
of the semantics and this decision greatly simplified both the con-
struction and the verification of the implementation. It is interesting
to note that questions that arose in the construction of the imple-
mentation often motivated simplifications in the semantics.

The orig±nal plan for this work called for verification of the
program while it was being constructed. This plan was not followed
and verification began after the program appeared to be working
correctly. It was a pleasant surprise to find that construction of a
proof of correctness suggested program changes that both simplified
and improved the efficiency of the program. In addition, coding errors
that were not detected by extensive testing were detected and corrected
while constructing an informal proof of correctness.

The most interesting discovery of this work is that simply con-
structing an implementation that closely follows a precise mathematical
definition does not guarantee a simple verification of the implementa-
tion. Some very interesting questions about writing the specifications
of a program must be dealt with in a satisfactory way.

As an example, consider the implementation of APt individuals.
The set of APL individuals in the formal semantics is an inductively
defined set of n—tuples of natural numbers. This is a highly structured
definition and the abstraction mechanism of SIMULA is sufficiently
powerful to deal with this kind of definition in a straightforward
way. Indeed, the SIMULA definition of the class ap~_individual thatappears in Section 31.2 of Appendix I is, in many ways, easier to
understand than the definition given in Section 21.4 of Attachment 1.
Is the set of APt individuals the same set of objects as the set of
instances of class api_individual? Intuitively, the answer is “yes,

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _  _ _ _ _ _ _ _  ~~.- VVV V V~~~~~~~~~~~~~~



7.

with some minor qualifications”. Establishing this statement with
some degree of precision is rather more difficult!

Some of the components of APt individuals are rationals and only
a subset of the rationals can be represented using the floating point
hardware of the host computing machine. This problem has been avoided
in the present work by assuming that the host machine adequately
approximates rationals by selecting an appropriate precision for reals.
This issue is of importance but is beyond the scope of the present
research.

The finite word length of the host machine also restricts the
magnitude of integers. This imposes limits on the rank, shape and
cardinality of APL individuals in the implementation. Let maxint be
the largest integer that can be represented on the host machine. We
would like to prove two theorems :

Theorem 1. Each APt individual such that its rank and cardinality 4
are less than or equal to rnaxint and such that each component of its
shape is less than or equal to maxint is implemented by an instance
of class api_individual.

Theorem 2. Each instance of class ap i_individ~aZ ~mp1ements
a member of the set of APL individuals.

The first theorem is fairly easy to prove once the definition of
implementatioü has been given. This definition essentially asserts
that there is a correspondence between the attributes of an APL
individual and the attributes of the implementation. The exact state-
ment of this definition is a fairly delicate problem and sharpened
this writer’s understanding of implementation.

The second theorem is considerably harder to prove and the proof
of this theorem motivated a substantial change in the original defini-
tion of class api_individual. Ideally , one would like to prove that
each instance of this class has all of the attributes of an APL
individual. To prove this, one must show that it is not possible to
create an instance of this class that does not satisfy this definition
and that once an instance of the class is created it cannot be changed
to an object that does not satisfy the definition of an APL individual.

The protection mechanism of SIMULA plays an essential part in the
proof of this theorem to the extent that it can be proved. It is
possible to provide read—only access to class attributes and this
makes it possible to prohibit changes to some attributes. 11oweve~~.
it is necessary to change other attributes if the implemented indirid—
ual is to be useful. Even with the help of these protection mechanisms,
it is only possible to prove the following theorem:

Theorem 2a. As long as execution of the implementation continues
without error termination, each instance of class api_individual
implements an APt individual.

. .- - - - .--- ~ ~~~~~~V- - . ~~~~~~~~~~~~~~~~~~~~ ~~~~~~
V__



8.

Even with. a proof of this theorem in hand, one i.e left with a
rather insecure view of the implementation. When will it error
terminate without warning? This insecurity is relieved to some extent
by a theorem which asserts that error termination in class api individual
will occur in a limited number of circumstances that are enumerated
in the theorem.

This alone does not provide much. added confidence. In addition ,
it must be shown that each time one of these circumstances could
arise , the program that manipulates APL individuals has the property
that it cannot arise . This adds a signif icant amount of work. to the
problem of proving that the implementation is correct.

Stated in another way , it is necessary to prove two properties of
the implementation: (1) As long as the program is running without
error termination, it is a correct implementation of APL as defined
in the semantics. (2) The program will not have an error termination.

It is not necessary to prove termination in the usual sense of
this term for the following reason. An APL interpreter continues to
interpret input lines one after the other without ever terminating
execution. There is one distinguished input which. causes program
exit : ) OFF . It must be shown tb-at this input will cause program exit.

It is necessary to prove a theorem that asserts that the inter-
preter will correctly interpret any input line and that after this
line has been interpreted, it will again correctly interpret an
input line.

This discussion of the verification of the implementation is
incomplete because all of the issues to be addressed have not yet
been considered. They will be addressed as part of continuing work
on this research under grant AFOSR—79—0021.

The implementation is not described in any grant publications and
it may be helpful to provide an overview of the implementation. The
program consists of about 3250 lines of ST.VMULA code including many
blank lines to improve readability.

The program is divided into ten layers. Each. layer has access
to all of the objects declared at lower levels. This structure was
selected to reduce the possibility of incorrect interactions. The
program structure alone does not prohibit all incorrect interactions 4
and those which are not precluded by the program structure must be
shown to be absent.

The bottom layer of the program is class ap lO which contains
functions and predicates that are used in all higher levels. These
procedures include input/output translations, the fuzzy comparisons
and data structures that are used at higher levels. When this class
instance is created, a variety of initializations are performed. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ -


-- -~~~---
--, --- ,-

~~~~----—— —
~~~~~ 

. - —
~~~

9.

The next layer is class apll and this is where the class
api_individual discussed in Section 31.2 of Appendix I is declared.
In addition, procedures that implement the predicates of APt individ-
uals that are defined in Section B5 of the research monograph are
declared. These procedures are to be verified in appendicies
of the research monograph. In addition, the distinguished APt
individuals are declared.

The next two layers, classes api2 and apl3 contain declarations
of the primitive function classes. The first of these classes is
the primitive Jw~ction class mona4icacala.r. Recall that the monadic
scalar functions are defined using a template with three blanks. This
template is implemented in class monadic_scalar. The blanks are
filled in using subclasses of monadic_ecalar which define the missing
pieces. One instance of each of the subclasses is to be created and
placed in the primitive function table. Each subclass has a procedure
attribute perfoz’m and this procedure is executed to execute the
primitive function. Similar statements apply to the two dyadic function
templates; they are implemented as classes dyadic_1 and dyadic_2.

The mixed function definitions do not have a clearly visible
structure and they are defined in a more or less independent way
but references to these functions are dealt with in the same way.

From a vantage point just above class apl3, the set of APL
individuals and the primitive functions defined in the semantics,
except for assignment, are available.

Class ap i4 is, in some ways, a transition between the purely
semantic objects below and the mixture of semantic and syntactical
objects above. Some components of the syntax of APL are defined and
symbol tables and functions on symbol tables that are defined in
the semantics. These objects are used to implement assignment in the
procedure assign. This matches the definition of assignment given
in the formal semantics.

Class ap l5 contains the declaration of some of the components of
the syntax analyzer. These include some of the procedures used in the
syntax analyzer . In addition , the correspondence between primitive
function symbols and procedures that implement them are declared
and initialized. This class is best viewed as creating the working
environment for the syntax analyzer.

Class apiS is the syntax .analyzer . This program is basically a
finite state machine parser that accepts an input line (as an
apl individziai that contains the string) and constructs a syntax tree
which is traversed by the interpreter.

Class api? contains the expression evaluator. The class declara-
tion includes declarations of all of the procedures that implement the
functions that are used to define the function ~~~ in the semantics as
well as the implementation of ~~~ itself. 

- . .-- 



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -.-- ,~ ---— — --~~~~~~-~~. --~—— ‘  .—-— -

10.

The next layer , class ap i8, contains initializations of a number
of constants that are used in the main program.

The top layer is the main program itself. It begins by performing
a number of initializations that are required at lower levels. The
main part of this program consists of a loop that examines an input
line by calling the syntax analyzer and then applying the interpreter
to this line. A number of global error checks that are related to the
input/output operations are performed. In addition, some error
checking that arises because the entire language is not yet implemented
is performed. This program will be replaced in the final implementa-
tion.

The plan for extending this implementation to a complete APt
implementation may be summarized as follows. After the semantics of
function execution is given, the interpreter function will be extended
to include execution of user defined functions. The semantics will
include an APL defintiion of the remaining primitive functions and
these definitions will be added to the initial symbol table. When
this is done, the language implementation will be complete except
for a few “utility” procedures.

The symbol table completely characterizes an APL workspace.
In order to implement the system coi and )SAVE , a symbolic represen-
tation of the symbol table will be selected and used to write work—
spaces on disk files. The inverse of )SA4VE, namely )LOAD, will also
be written. Lastly, )CONTINUE, a combination of )SAVE and )OFF will
be written. These system commands are not a part of the semantics and
are viewed as utilities. The remaining system commands are , in fact,
duplicated by system functions and are part of the formal definition
of APL.

_ _ _ _ _ _ _ _ _  ~~~~- , ~~~~~~~~~~- -- ~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~— --- . , - -  - -



11.

3. TRANSFER OF PROGRAM AND DATA FILES TO VIRGINIA TECH

The most difficult and frustrating task associated with moving
this research from the University of Arizona to Virginia Polytechnic
Institute and State University was the transfer of data files from
the DECsystem—1O at the University of Arizona to the IBM System
370/138 at Virginia Tech. Once the files were transferred, it was
fairly easy to modify SIMULA programs for execution using the
compiler written for IBM machines by the Norwegian Computing Center.

Commercial computer service organizations are well prepared to
receive data files from other installations and to transmit files
to outside machines. In contrast, University Computer Centers pro-
vide limited help for this kind of file transfer. The staff of the
University of Arizona Computer Center provided technical advice and
the Department of Computer Science at Virginia Tech provided sub-
stantial technical staff support to complete the file transfer.
Without this support from Virginia Tech , the file transfer would not
have been successful.

The technical problems associated with the file transfer are
best described as a sequence of annoying problems concerning the
obscure details of tape representations, etc.

The first step was to find a tape format that could be written
by a DEC—10 and read by an IBM machine. This format is blocked,
fixed—length records without labels of any kind in either ASCII or
EBCDIC characters. A program to write such tapes was found in the
UA program library. The documentation for this program was rather
sketchy and three attempted interchanges were attempted before the
fourth successful interchange. A ~MS EXEC procedure to generate
batch jobs to selectively load DEC—10 files onto an IBM machine was
written. This tape load procedure has been found to be very reliable
and the DEC—10 tapes are now used for off—line storage of files.

The second step was to examine each DEC—10 file to determine
file descriptions that are required by IBM machines. For a DEC—10,
a file is a sequence of ASCII characters divided into records by the
character sequence carriage—return , linefeed and the number of rec—
cords in the file as well as the length of the longest record is not
known . When writing files for an IBM machine , the number of records
in the file. and the length o~ the longest record must be known sothat fixed length records can be written on tape and then read from
tape. A program to examine files and collect the required data was
written. The report produced by this program is processed by a
second program that generates commands for the tape writing utility.
A listing of this coimnand file also provides information that is
needed when loading files onto IBM machines.

The third step was to assemble all of the files to be trans-
ferred on disk and to make a number of changes in the files before 

~~~~~~~~~~~~~~ - - -~~


-- - . - —- -. - - -

12.

writing them on transfer tapes. These changes include deleting line
numbers and page marks as well as replacing tabs with the appropri-
ate number of blanks. In addition, some language specific changes,
described in Section 5, were made . This step consumed considerable
time because many files were stored on DEC—10 BACKUP tapes.

The fourth and final step was to read the files onto the
disks of the IBM machine and recompile the programs. The status of
this work is described in Section 5.

There are two specific accomplishments to report:

(1) All relevant files were successfully transferred from
the University of Arizona to Virginia Tech.

(2) A technical memorandum describing the file transfer
procedure was written and distributed to the Depart-
ments of Computer Science and Computer Centers of

- Virginia Tech and the University of Arizona. A copy
of this memo (Technical Memorandum No. APLAD14) is
Attachment 3 to this report.

~ -- —- .--- ---- ...-- ~ .

13.

4. TRANSFER OF APt WORXSPACES

Some of the ideas used in an earlier set of workapaces to verify
APt programs [Feldbrugge , l973a, l973b] are relevant to the present
research and it has been helpful to have these workspaces available.
In addition, a number of small workspaces that support the present
research have been written and remain useful. These workspaces have
been transferred from the DECaystem—lO at the University of Arizona
to the IBM System 370/158 at Virginia Polytechnic Institute and
State University.. The status of these workspaces is summarized in
Section 5.

The transfer of APL workspaces is more complicated than the
transfer of source program files for compiled languages because
APL workspaces are stored as binary files on disk and this format is
completely different for different implementations. Some character
representation of the workspace is required for transmission from
one computer to another.

This kind of workspace interchange will be quite easy when the
Proposed STAPL Convention for the Interchange of APL Workapaces
(APt Quote Quad, Fall 1977, pp. 25—35] is adopted and implemented
by all implementors of APL. Since this software was not available,
two representations of APL vorkspaces as character files were imple-
mented. One of these is a simple terminal transcript with the
property that when the text of the file is read by an APL interpreter
the workspace is recreated. The second representation conforms to
the STAPL convention.

There are a number of incompatibilities between all of the
existing APt systems . The main source of these incompatibilities
is the definition of file input/output and system variables. These
differences also introduce differences in the character set of the
implementations so that a function definition that is syntactically
acceptable in one implementation is unacceptable in another. A
reasonably complete list of incompatibilities between Digital
Equipment’s APLSF and IBM’s V$/APL was compiled and a set of direc-
tions for modifying workspaces to avoid these incompatibilities has
been assembled.

A set of functions that can be used to write a terminal trans-
cript of a workspace has been written and used to transfer APt
workapaces from a DEC—10 to. ~n IBM machine. These functions are
read into a workspace that is to be transferred and when the
functions are executed a terminal transcript is written as a key—
paired ASCII disk file. When the APt interpreter is directed to
read this file as though it were terminal input, the original work—
space is recreated. Files written in this - form are then transferred
to another machine using the programs discussed in Section 3. This
procedur. has successfully transferred workapaces to the 370/158
at Virginia Tech.

~~-~~~~~~~~~ - - . -,~~~~~~~~- --—-- . .

- ~~~~~~~~- -—-~~~~~~~~~~~~~ - - - -., - . --~~--~~~~~~~~~~~~ --~~ -~~~~~~~~~~~~~~~~~~~~~~~

14.

The Proposed STAPL Convent ion for the Interchange of Workapaces
defines three levels of workspace representation. In the first
level, each object in the workspace, functions and variables, are
represented as character vectors. There are simple functions for
converting objects into character vectors and for reconstructing the
obj ects given the character vectors . At the second level, these
character representations of objects are combined into a single
character string that represents the entire workspace. The functions
for converting to this representation and for restoring the objects
are more complicated but they still use the level one functions. In
addition, a fixed format for these character strings as records in
a file is defined. The third level convention establishes the
exact format in which workspaces are to be written on nine track
magnetic tape. This format is a string of bits which is presumably
independent of any computer manufacturers hardware and which can be
read and interpreted on any machine.

During the period of the grant, functions to create STAPL
level l and level 2 representations of workspaces were written and
used to write APL workspaces as disk files. These files were trans-
ferred to Virginia Tech and have been read and used to reconstruct
workspaces. After the termination of this grant, using computing
funds provided by the Department of Geosciences and the Computer
Center at the University of Arizona, functions to create and read
workspaces written using STAPL level 3 representations were written
and tested. These functions have not been used across different
machines but they are known to be inverses of each other on a
DEC—10.

There is a second application for the STAPL level 2 representa-
tion of APL workspaces. The usual binary files for APt workapaces
require a substantial amount of disk space. For a DEC—10, the level
2 character representation of a workspace requires about half as
much disk storage. For infrequently used workspaces, this repre-
sentation can reduce the cost of disk storage.

In su ary , the following has been accomplished:

(1) APL workspaces used in this research as well as other
workapaces were transferred from the DEC—10 at the
University of Arizona to the IBM System 370/158
at Virginia Tech.

(2) APL functions to represent a workspace as a file that
is a terminal tran~cript that will recreate the workspace
were written and used to transfer workspaces.

(3) Functions to write STAPL Convention Level 2 representa—
tions of workspaces and to restore vorkspaces from this
representation were written and used to transfer work—
spaces.

. . ~-.~~~~~~~~~~ -- -- ~ - .

—.
~~~

. ..—— -- —‘--- -

15.

(4) Functions to write and read STAPL Convention Level 3
representations of workspaces were written and tested
using the DEC—10 at the University of Arizona.

(5) A technical memorandum describing this work that includes
directions for using the programs and the actual program
text was written. This report is Attachment 4 to the
present report.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -- . .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



16.

5. STATUS OP PROGRAMS AT VIRG INIA TECH

The most important programs used in this research appear to be
running correctly on the Virginia Tech IBM 370/158. The most difficult
part of the conversion was preserving the interactive nature of the
programs in spite of a much more limited host interactive system.
It was a pleasant surprise to find that the SIMULA programs constructed
as part of this research were the easiest programs to transport. Next
in difficulty were the APL programs that support this work and the
most difficult programs to move were the Fortran programs that support
some of the SIMULA programs. The APL implementation described in
Section 2, above, is now working correctly as is the interactive
verifier described in (Britton , 1977]. The following paragraphs
describe some of the difficulties that were encountered when trans-
ferring these programs.

There are minor differences in the details of terminal transcripts
when running all of the programs used in this research. For example,
DEC—10 SIMULA provides a procedure breakoutimage which transmits a
line to the terminal and does not terminate this line with a carriage
return—line feed character pair. Using this procedure, it is possible
to prompt for a response and have the response entered on the same
line as the prompt. This facility is not available in IBM SIMULA, and ,
therefore, prompts and responses are on different lines. In the IBM
SIMULA implementation, the system procedure Outimage is buffered for
one line. This means that an output line is retained in memory until
the output line which succeeds it is created and ready for printing.
This means that responses to user input are delayed by one line. The
difficulties raised by this mode of operation can be eased by including
additional blank lines in the terminal transcript using additional
calls on the procedure Outimage.

The first progran to be converted was the APt implementation
described above and this conversion required approximately one man
week. During this conversion work , some minor incompatibilities between
the DEC—10 and 1314 SIMULA implementations were discovered . In
addition , one language incompatibility and one system error in the

• IBM implementation were discovered. These differences are summarized
in the following paragraphs .

There are differences in the computer representation of SIMULA
programs that are not fully described in the DEC—10 SDfUIA documenta—
tion. The IBM compiler requi res 80 column fixed length records and
colimins 73 to 80 are ignored because this is space for sequence
numbers on cards . Although all of the programs had line lengths less
than or equal to 80 characters, a substantial. amount of editing to
make each line 72 characters or fewer was required. Except in text
constants, the IBM SINULA compiler does not accept lower case letters.
Using the DEC—10 implementation , which supports upper and lower case
letters, a programming convention for the use of capital letters for
key words, lower case letters for ordinary identifiers, and initial



17.

letter capitalized words for system procedures was used . It was
necessary to change all of these lower case letters to upper case in
order to use the IBM implementation. Again , a substantial amount of
editing was required so as to preserve lower case terminal prompts
which are essential in the APL implementation.

A number of changes in the program text were required in order to
preserve a readable listing. For example, the DEC—10 SIMULA compiler
uses the character line feed to indicate the beginning of a new list-
ing page and the character vertical table to indicate that lines are
to be skipped in the output listing. These characters are not rou-
tinely supported by CMS and, therefore, they were removed from the
program text prior to transmitting the programs to Virginia Tech. It
was necessary to introduce %TITLE and ZPAGE control cards as well aa
additional blank lines to recreate a readable listing. While there is
nothing difficult about this task, it consumes a substantial amount of
time.

One incompatibility between the DEC—10 and IBM SINULA implementa-
tions was detected . This change , which required minor program modifi-
cations, may be described with the help of Figure S—I. Observe that
class A has a procedur e attribute foo . This interger procedure
returns a value 5. Class B is declared to be a sub—class of class A
and uses a call on the procedur e foo to fix the upper bound on the
array elements. In the DEC—10 implementation, the creation of an
instance of b will proceed correctly and the upper bound of the array
elements will be 5. In contrast, the IBM compiler rejects this pro-
gram text pointing out that the procedure foo is declared at the
same level as the reference to foo . This diagnostic appears to be in
variance with the definition of SII4ULA given in the common base and
has been reported to the Norwegian Computer Center.
begin

class a;

begin

integer procedure foo ;
foo:5;

a class b;

begin
real array elementa[l:foo3;

rsf(b) x;
x : - new b

end Figure 5—1 

~~~~~~ . .- - ..


~ ~~~~ -. •---~ ----~~~~~~~~ - . ..,~~~~ ---- -- --- - -,-~~~-
.
~~~ - - - - -~~~~~~~~~~~~~~~~~~~ -• --

18.

There appears to be an error in the IBM SINULA run time system.
When executing the APL interpreter described above, an error message
indicating that an actual parameter to a procedure is not of type
numçric when , in fact , the parameter is a real procedure. It is
possible to avoid this run time error by declaring a real variable
and assigning the return value of the real procedure to this variable
and then using the variable as an actual parameter to the procedure
in question . This construction is somewhat less efficient and makes
verification of the program slightly more complicated. A report of
this error has been transmitted to the Norwegian Computer Center.

Using the information gained while converting the APt interpreter
from DEC—10 SII4ULA to IBM SIMULA, the program verification system
described in (Britton , 1977] was converted to three man days. This
program has been partially tested on the IBM system but not all paths
of the program have been executed so there may be additional diff i—
culties . The principal effort involved in converting this program
was editing to shorten program lines to 72 characters and to modify
text constants in order to preserve upper and lower case prompts after
the program text was converted to upper case in order to satisfy the
IBM compiler .

Forty—three APLSP workspaces were transferred from the University
of Arizona to Virginia Tech. This set of workspaces includes work—
spaces used in the current research as well as administrative work—
spaces and other utilities that are useful in a variety of
applications. The workspace transmission procedure described in
Section 4, above, worked very successfully in that all workspaces that
were tested worked as expected. Although all of the work spaces
have not yet been tested, there is substantial reason to believe that
the three man days devoted to moving them is close to the total time
required. It was necessary to write APL/VS functions to simulate
the input/output functions of APLSF so that workspaces would function
as intended. This code is rather more intricate than one would like
but it seems to meet the needs. Some workapaces, particularly the
verification workspaces, have symbol tables with more than 256
entries. In a default APt/VS workspace, the default symbol table size
is 256 entries and these workspaces have more than 256 variables and
functions. It was necessary to modify this symbol table size so as
to accommodate the larger workspaces.

It has been a consistent policy for this research to avoid the
creation of Fortran programs. Nevertheless, a number of Fortran coded
library programs are used to support the program verifier. For
reasons of efficiency, the parser in the program verifier does not
generate parse tables from an input grammer. Rather it releies on an
SLR 1 parser generator that was coded in RATFOR and translated into
Fortran. These programs were represented by their author as being
substantially machine independent and easy to transport to other
inatalltions; indeed, they executed correctly using GDC Fortran and
both DEC Portrans. The difficulties associated with transferring
these programs has been substantial.



19.

RATFOR is one of a wide variety of syntactical front ends for
Fort ran . It attempts to provide a reasonable syntax for Fortran pro-
grams . The RATFOR compiler , itself a Fortran program , accepts
RATFOR statements as input and allegedly writes “standard” Fortran as
output . A RATFOR compiler was used to create the Fortran programs
that comprise the SLR]. parser generator. The original plan for the
transfer of these programs called for transferring the RATFOR
compiler as well as the RATFOR source programs for the SLR1 parser
generator. As a backup measure, the Fortran versions of the programs
in the SL1U. parser generator were also transported; this turned out
to be a very wise decision.

The RATFOR compiler is a Fortran program of some 2500 lines .
Approximately two man days were devoted to attempt ing to compile this
program using the IBM Fortran compiler . At the end of this time, it
was quite obvious that the work remaining to be done was substantial
and therefore, attempts to successfully convert the RATFOR compiler
were abandoned and attention was directed to directly converting the
four Fortran programs that are part of the SLR]. parser generator .

The SLRJ. parser generator consists of four programs , each of
about 1500 lines . The first of these four programs has been
successfully compiled and executed. It is not possible to say
whether the program runs correctly because the output of this first
program is coded input to the second program. There is reason to
believe that it runs correctly but there is no evidence to conf irm
this . The remaining three programs in the SLR.1 parser have not yet
been converted . This converesion will be attempted as soon as time
is available. The unavailability of these programs does not impair
current research work but it will become a problem in the future.
It is estimated that one to two man weeks of labor are required to
complete this conversion.

It is easiest to describe the Fortran incompatibilities by enume-
rating language features that are not supported by IBM Fortran but
are available in CDC and DEC Fortran . ACCEPT and TYPE statements for
terminal (or SYSIN/SYSOUT ) input and output are not available in IBM
Fortran. Rollerith assignments, e.g., A — ‘XY ’ or A — 21CC!, are not
available in IBM Fortran . In addition , quoted liollerith constants
are only accepted in FORN&T statements and are rejected in DATA
statements. The domain of the logical and relational operators in
1314 Fortran is much more restrictive. IBM Fortran accepts lower
case characters only in Hollerith constants while CDC and DEC Fortran
accepts lower case program tçct. Lower case was used in these pro-
grams and this change forces additional editing.

The file management support provided by the DEC-10 and IBM
operating systems differ sharply and these differences have made
programs transfer considerably more difficult. At best , there has
been s~ ’ie loss in the interactive properties of programs as a result
of this move. This reduction in interactive properties is principally
related to the use of data files. The problem arises as follows :



1
20.

the DEC—10 operating system permits users to create or access a file
by simply mentioning the name of the file. Thus, it is possible
to prompt the user for the name of a file and then open the file to
read or write. In contrast, in the IBM operating system, it is
necessary to define all files to be used by a program before program
execution begins and once execution has started , it is not possible
to change files. (This can be done using assembly language code
that violates operating system conventions and will not be used because
it is poor programming practice and may lead to programs which do not
work correctly in the future.) A set of operating system macros ,
called EXEC files, are being written to prompt the user for file names
and to execute the appropriate FILEDEF coismands . While this arrange-
ment preserves some of the interactive properties of the DEC— 10
environment, it suffers from the disadvantage that decisions must be
made before the requisite information is at hand and this makes using
programs more difficult.

In summary, the following has been accomplished:

(1) The SINULA implementation of APL as described in
Section 2, above, has been successfully moved from
the DECsystem—lO at the University of Arizona to
the IBM 370/158 at Virginia Tech . The program is
working correctly and in substantially the same way
that it did at the University of Arizona.

(2) The program verification system described in
(Britton , 19771 has been moved from the University of
Arizona to Virginia Tech. This program appears to be
working correctly although all paths through the
program have not yet been tested . There is no reason
to anticipate further difficulties.

(3) APLSF workspaces used in this research and in other
tasks have been transferred from the University of
Arizona to Virginia Tech.

(4) The files for the Fortran programs that are used to
generate parser tables for the SLR1 parser in the
program verifier have been successfully moved. One of
these four programs has been compiled and executed;
it appears to work correctly but final testing awaits
the conversion of remaining programs .



_ _ _ _ _ _ _ _ _ _ _  
_ _  _ _  - .

21.

6. NA1~ESPACES FOR APL

At a workshop sponsored by Syracuse University and STAPL held
at that University’s Minnowbrook Conference Center in September 1977,
a number of sessions were devoted to extensions of APL to provide for
the protection of groups of functions and variables , to facilitate
library management and to provide co—routines. The ideas presented at
that workshop might well be described as preliminary ideas about a new
extension to ~PL.

During these sessions and in conversations with the speakers, it
became obvious that this proposed extension to APL closely resembles
the class concept of SINULA. In order to clearly focus on these
ideas , an informal discussion of SIMULA classes together with a class—
like extension to APL was written . This manuscript was complete
early in January , 1978 and was typed with grant support but duplicated
by the University of Arizona . This informal discussion has been sub-
mitted , as an extended abstract of a paper , for presentation at APL
79 in Rochester , New York in May 1979 . A copy of the manuscript is
Attachment 5 to this report.

The basic view adopted in this manuscript may be described
briefly as follows. For at least four years , there has been an active
debate concerning arrays of arrays as an extension to APt in the APt
community. This debate has led to considerable new understanding of
the properties of arrays of arrays but the work has not proceeded to
a point where it is possible to clearly define a reasonable extension
of APL to include arrays of arrays in an unambiguous way. This leads
me to believe that the concept of arrays of arrays is not an
appropriate extension to APt. Yet, one frequently finds that this
general kind of extension ‘-o APL is useful when coding a particular
algorithm or choosing ~ c’ ~~ representation before coding an
algorithm. This suggests that some structure of this sort would be
a usef ul extension . The SINTJLA class , with its clean and orderly
definition, provides a simple and straightforward way to extend an
underlying language to essentially arbitrary data structures. More-
over, these data structures can be defined by the user in such a way
that a node of the structure may consist of both storage locations
and procedures . Such a structure can be traversed in many different
ways and at each node one can either refer to the data stored there
or execute procedures that are attributes of a node. This kind of
extension to APL will provide a solution for the problems that are
being addressed by arrays of arrays.

The great strength of APt lies in its ability to apply a primi—
tive or user defined function to either a scalar or to an array of an
arbitrary number of dimensions. A class—like extension of APL should
include the possibility of extending primitive functions and user
defined functions to data structures constructed with a class
mechanism. This can be achieved quite simply by including a def i—

_ _  
_ _ _ _  -4



~ ---~~~~~~~~~~~~~ --. ——~~~~~~~~- ~~~~~~~~
_ -~ -~~~~- ~~~~~~~~~~~~~~~~~~ - _ - . -~~~~. 

-
~~~- 

- _
~~~~~~~~~ 1~~~

22.

nition of-the  way in which a monadic function is to be applied to an
instance of the class and by defining the way in which a dyadic
function is to be applied to an instance of the class. With these
two definitions, it is possible to generalize all of the functions
to the arbitrary structures that the user defines and , therefore, I
have proposed that these definitions be part of a class—like
extension to APt .

This work is peripheral to the main thrust of the grant but ,
nevertheless , is not completely independent of it. Extensions to
APt that cause APL ’s character to be substantially changed would
dramatically reduce the practical utility of the work that is to
be done under the grant . Secondly , the discussion of such language
extensions motivates questions about the details of the construction
of this present semantics of APL. For example , if a highly regarded
proposed extension were to be found to be incompatible with the
semantics , this would be evidence to indicate that the semantics is

- not well constructed . On the other hand, examples of extensions of
APL that can be easily added to the semantics support the claim that
the semantics is amenable to generalization and can , to some extent ,
be used to support the claim that the proposed extension is reason-
able. It appears to be very easy to add this class—like extension to
the semantics and implementation that are part of the grant work.

I

L 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ ______ ______ - . -~~---~--~~~~

4

7. PERSONNEL AND ACTIVITIES

Dr. Richard J. Orgass devoted approximately five man months to
the work reported here. Of these five months, two months were
supported by grant funds. In addition , two months of work were done
while Dr. Orgass was supported by the University of Arizona and one
man month of work was done while Dr. Orgass was supported by Virginia
Polytechnic Institute and State University.

During this time, Dr. Orgass was engaged in developing the seman-
tics of !&PL described in Section 1, above, and supervising the work
of students employed by the grant. In addition, he made a number of
contributions to the design of the program described in Section 2,
above and began construction of a proof of its correctness.

Mr. Ralph B. McLaughlin was supported by grant funds for the
total of 4.5 man months . This appointment consisted of five months
with a half time appointment and two months with a full t ime appoint-
ment . During this time, Mr. McLaughlin ’s responsibilities were the
design and verification of the program described in Section 2. A
fragment of this progr am was already in existence when the grant be-
gan and so the program design consisted primiarly of modification and
extension of an existing program. This was a large piece of work but
certainly not one that would have occupied all of this t ime . A
review of Mr. McLaughlin ’s work was conducted at the end of June and
it was determined that it was highly unlikely that he could success-
fully participate in the work of this grant and complete his Ph.D.
requirements. Therefore, Mr. McLaughlin ’s association with the work
of this grant was ended in July 1977 and he will not further partici-
pate in this research.

Mr. Karl Rautenkranz , a graduate student at the University of
Arizona was supported by this grant for four man weeks . Mr.
Rautenkr anz wrote the APt workspace transfer programs described in
Section 4, above, and, in addition, performed a wide variety of
editing tasks in support of the transfer of this research from the
University of Arizona to Virginia Tech. This proved to be a highly
satisfactory relationship for all concerned because Mr. Rautenkranz
did high quality work and learned a great deal at the same time.

A student secretary was supported by the grant during the spring
semester and a second student secretary was supported by the grant
during the summer . The use o~f student secretaries considerably
reduced salary expenses and in the case of the spring term secretary
outstanding support was provided by a highly qualified secretary.
The student employed during the summer was useful but only marginally
qualified for the job and , in balance , the engagement of this person
was close to a mistake.

L -~~

~
-
~~~~~~~~~~~~~~

--

24.

8. PUBLICATION S

The results of the research on the semantics and implementation
are to be published as a research monograph. A partial draft  of
the monograph together with a detailed summary of the remainder of
the monograph will soon be submitted for consideration for the
Lecture Notes in Computer Science published by Springer—Verlag and
for the Computer Science Series published by Elsiever—Nortli—Holland.
In order to make some of this work available before publication , the
first two chapters were issued as technical reports:

R. J. Orgass and R. B. McLaughlin. A Formal Semantics and
Implementation of APL , Chapter I — Introduction. Technical
Report No. APLTD7 , Department of Computer Science , University
of Arizona , November 18, 1977.

R. J. Orgass and R. B. McLaughlin . A Formal Semantics and
Implementation of APt , Chapter II — Semantics of Simple
Expressions . Technical Report No. APLTD8, Department of
Computer Science , University of Arizona , May 15, 1978.

These reports are Attachment 1 to the present report and the distribu-
tion list is Attachment 2.

A set of DEC—10 programs that were used to transfer files to an
IBM System 370 were written while this research was transferred from
the University of Arizona to Virginia Tech. These programs are
described in:

R. J. Orgass. Transferring Files to an IBM Machine. Technical
Memorandum No. APLAD14, Department of Computer Science ,
University of Arizona , July 28 , 1978.

This work was supported by grant funds and a limited number of copies
were duplicated using grant f unds; additional copies were duplicated
using Virginia Tech funds . This report is Attachment 3 to the present
report .

Grant funds were used to write APL programs to transfer APt
workspaces from the University of Arizona to Virginia Tech. After
the grant terminated , a technical report was written :

K. Rautenkranz and R. J. ~0rgass. Transfer of APt Workspaces:
A Useful Solution. Technical Report No. CS78006—T, Department
of Computer Science , Virginia Polytechnic Institute and State
University, September 1978.

This report , which is Attachment 4 to the present report , was prepared
and duplicated with Virginia Tech funds.

. . -  
~~~~~~— - . , -  ~~~~~~~---~~~--~~~~~~~~~~~~ - - ~~~~~

_ _ - - -

-
~~~~~ 

25.

Before grant support began, some work on a namespace extension
to APL was completed. This work is described in:

B.. J. Orgass. Concerning Namespaces for APt . Technical
Memorandum No. APLAD12, Department of Computer Science ,
University of Arizona, February 10, 1978.

This report, which is Attachment 5 to the present report, was prepared
using grant funds and duplicated with funds provided by the University
of Arizona and Virginia Tech . This report was submitted for presenta-
tion at APL79 and has been accepted as an extended abstract. A
review of the final manuscript is pending.

Work on program verification that is the starting point for
research under this grant was completed before the grant began. This
work is described in:

B. E. Britton. Incremental Synthesis of Inductive Assertions.
Ph.D. Dissertation, University of Arizona, 1977.

During the term of Grant AFOSR—79—002 1, the third chapter of the
research monograph will be issued as a technical report . The remaining
chapters will first appear in the monograph .



26.

9. REFER~ 1CES

[Britton, 1977]
D. E. Britton. Incremental Synthesis of Inductive Assertions
for Program Verification. Ph.D. Dissertation, University of
Arizona, 1977.

(Feldbrugge, l973a ]
F .  H. 3. Feldbrugge Eeen Qpzet van eeen Interaktief Systeem
voor de Verifikatie van APL—programma ’s (ISVAP). Ph.D.
Dissertation, Techniache Hogeschool Twenk, 1973.

[Feldbrugge, l973b ]
F. H. 3. Feldbrugge. An Interactive System (ISUAP) for the
Verification of APt Programs Using Floyd ’s Method in P. Gj erl~v ,
H. J. Helms and 3. Nielsen (Eds.) APt Congress 73.
Amsterdam, North—Holland, 1973, pp. 119—126.

:

1

I 

. . -~~~~~~~~~~~~~~~~~~~~~~~~~~~. . _ _ _



27.

10. LIST OF ATTACHMENTS

The following attachments are provided only with the original
of this report .

Attachment 1
Technical Reports on the Semantics of APL

B.. J. Orgass and R. B. McLaughlin. A Formal Semantics and
Implementation of APt, Chapter I — Introduction. Technical
Report No. APLTD7, Department of Computer Science, University
of Arizona, November 18, 1977.

R. 3. Orgass and R. B. McLaughlin. A Formal Semantics and
Implementation of APL , Chapter II — Semantics of Simple Expres-
sions. Tecirnical. Report No. APLTD8, Department of Computer
Science, University of Arizona, May 15, 1978.

Attachment 2
Distribution List for Attachment 1

Attachment 3
Technical Memorandum on File Transfer

B.. 3. Orgass . Transferring Files to an IBM Machine. Technical
Memorandum No. APLAD14, Department of Computer Science ,
University of Arizona , July 28 , 1978.

Attachment 4
Technical Report on APL Workspace Transfer

K. Rautenkranz and R. J. Orgass. Transfer of APL Workspaces:
A Useful Solution . Technical Report No. CS—78006—T , Department
of Computer Science, Virginia Polytechnic Institute and State
University, September 1978.

Attachment 5
Technical Memorandum on Namespaces

B.. 3. Orgass . Concerning Namespaces for APt . Technical
Memorandum No. APLAD12, Department of Computer Science,
University of Arizona, February 10, 1978.

_ _ _ _ _ _  ___________________



f

APPENDIX I

Partial Manuscript
of

A PRIMITIVE RECURSIVE SBMANTICS
AND IMPLEMENTATION OF APt

CHAPTER III

Implementation of Simple Expressions

~

.- -

~

--——

~

- - -.- . . - 



~ - . -

~~~~~~~

-—-

~~~~~

- --

~~~~~~~

--

~~~~~~~~~~~~~ 

.-

~~~~~~~~

--

~~~

--

CHAPTER III

IMPLEMENTATION OF SIMP LE EXP RESS IONS

30. Overview

31. Implementation of APL Individuals
31.1 Numbers and Characters
31.2 Individuals

31.2.1 Example
31.2.2 Implementation
31.2.3 Restricted Individuals
31.2.4 Class Individual
31.2.5 Usual Individuals
31.2.6 Special Individuals
3 1.2.7 Labels
31.2.8 Function Definitions
31.2.9 Theorems
31.2.10 Implementation Details

32. Primi tive Scalar Functions

32.1 Implementation of Functions
32.2 Example
32.3 Mon adic Scalar Functions
32 .4  Dyadic Scalar Functions

33. Mixed Functions

33.1 Ashape
33.2 Index Generator
33.3 Vector Subscript

34. Symboi Tables

35. Syntax Analysis

36. Function Application

37. Assignment

38. The Interpreter ~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _
_ _ _ _ _ -

Chapter III Appendicies

E. INTRODUCTION TO SIMULA

El. Classes A—l7
E2. Data Structures A- 19
E3. Name Qualification . . . A—23
E4. Protection A—27
E5. Coroutines A—29

F. FUNCTIONS MD PREDICATES ON INDIVIDUALS -

G. IMPLEMENTATION OF MONADIC SCALAR FUNCTIONS

H. IMP LEMENTATION OF DYADIC SCALAR FUNCTION S

I . IMPLEMENTATION OF MIXED FUNCTIONS

- - -~ -~ -~ -~ ~~- - -~~~~~. - . ---- ~~~~~~~~~~~~~~~ . ~~~~~~~~~ -

105.

CHAPTER III

IMPLEMENTATICt4 OF SIMPLE EXPRESSI(~ S

30. Overview

An implementation of the simple expression evaluator
~~

is described
in this Chapter and it is shown that the program evaluates expressions in

accord with the definitions given in Chapter II. With minor exceptions that

are pointed out in the text , the program described here is part of the com-

plete APt interpreter described in Chapter VIII and the proof of correctness
of this program is part of the proof of correctness of the complete inter-

preter.

There are three major reasons for constructing this implementation and
proving that it is correct.

I wish to claim that primitive recursive arithmetic, as used in Chapter

II, is a suitable tool for defining real programming languages, for construct-

ing implementations of programming languages and for proving the correctness
of an implementation. The construction and verification of the present imple-

mentation of APt provides evidence to support this claim with respect to one
widely used interpretive language.

The formal definition of a widely used programning language is a diff i—

cult task because it is necessary to provide assurances that the formal def-

inition matches the language as it is used in practice. A substantial number

of examples have been executed on one or more implementations of APL in order
to determine the precise properties of primitives and the results of these

examples have been used to construct the definition of the syntax and semantics
of simple expressions. Nevertheless, there are many more complicated examples

that should be executed with the semantics to confirm that the language de-

fined in the semantics matches the language as it is used. Since it is

shown that the implementation is correct with respect to the semantics, the

program can be used to execute these examples much more quickly and reliably.
In another place, the author will show that the formal semantics given

here can be used to prove the correctness of APt programs. A persistent

question in program verification is: “Suppose a program has been shown to be

correct using some formal semantics of a prOgramming language , how do we

- - ~~~~~~~~~~ -.—- -~~~~~ --- - - - - -. ~~

106.

know that the program will run correctly? The implementor of the language

may have made mistakes in the implementation.” In this case, the question
does not arise because it has been shown that the implementation is correct
with respect to the formal semantics that is used to verify a program.

The choice of a programming language for the implementation was fairly

easy after I wrote down my specifications for the language. The following

requirements guided my choice: (1) The language must be well defined so

that it is easy to prove statements about programs written in the language.

(2) The language must be widely used and available on a number of different

computing machines with careful control of implementations. (3) The language

must have a powerful abstraction mechanism so that the implementation can
easily be structured. (4) The language must provide security mechanisms

so that parts of the implementation can be protected from each other. (5)

The object code written by the compiler must be reasonably efficient.

There are four languages known to me that meet some of these requirements:

ALPHARD, CLU , PASCAL and SIMULA—67. ALPHARD and CLU were rejected because the

definition of these languages is changing and because they are not available

on a variety of machines. They are not widely used for practical programming

and there is some evidence to suggest that the object code written by these

compilers is quite inefficient. PASCAL meets many of my requirements but the

abstraction mechanism of PASCAL, essentially record types, is inadequate for
this work. This statement can be confirmed by considering the program de-

scribed in this Chapter. There are essentially no protection mechanisms

beyond checking a variable for values in its range and this signif icantly
complicates the proof of correctness of the program.

SIMULA—67 meets the above requirements quite well. The common base

def inition [1] is, essentially, an extension of the Algol—60 report (2] and
it is possible to use most of the existing work on the verification of Algol

programs, e.g. (3,4] , in this work. SINULA has been implemented on a

variety of computing machines and th~se implementaions are carefully con-
trolled by the Norwegian Computer Center. The class concept of SIMULA pro—
videe a powerful abstraction mechanism (for example, see [5]) and when this

is combined with the protection mechanisms of the language it also provides

excellent security that is enforced at compilation.

It is assumed that the reader is familiar with SIMULA. In order to

make this volume self—contained, a brief informal introduction to SINULA

___________________________ - - . A

-

107.

appears in Appendix E. The reader is referred to Dahl’s paper [6] for a

more extensive discussion and to the common base definition [1] for a precise

definition of the language.

When designing this implementation, the objective was to construct a
reasonably efficient program that is easy to verify. There are a number of

optimizing and correctness preserving transformations that can be applied to

the program. If they are applied, the resulting program would be less obvious
and many of the proofs would be more complicated and, therefore, the program
has not been optimized in great detail. In many circumstances, it was a

pleasant surprise to find that a program structure that facilitates ver-

ification is also more efficient than alternative structures.

The organization of th’s Chapter closely follows the organization of

Chapter II. The text describes the essential arguments and routine details

appear in appendicies.

Section 31 describes the implementation of APt individuals and it is

shown that the implementation is equivalent to the definition given in Section

21.4. The implementation of primitive scalar functions is described in

Section 32 and it is shown that the programs that implement these functions

are correct with respect to the semantics. Section 33 has a similar discus-

sion f or mixed functions.

The implementation of symbol tables is described in Section 34 and it

is shown that the implemented symbol tables are equivalent to the symbol

tables defined in Section 26.2. Symbol tables are used by both the parser
and the expression evaluator. The syntax analyzer is described in Section

35 and it is shown that the set of expressions accepted by the syntax ana-

lyzer is the set of expressions defined in Sections 24 and 27.3. In addition

to recognizing expressions, the syntax analyzer constructs an expression tree

that is used by the expression evaluator. It is shown that the trees that are

constructed have certain properties that are used to prove that the expression

evaluator is correct.

The discussion of function application and assignment is part of the

description and verification of the expression evaluator. Section 36 describes

the function application mechanism and this is shown to be equivalent to the

definitions of Section 26.3. Section 37 describes the implementation of

assigmment and this implementation is shown to be equivalent to the def in—

itions of Sections 27.1 and 27.2.

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -.- . ,--- --~~~~~~~~—

108.

Finally, in Section 38, the implementation of the simple expression
evaluator ~~~ is described and it is shown that the value of an expression ,

as computed by the interpreter is the same as the value of the function

~~~ 
of Section 27.4 for all simple expressions and symbol tables.

31. APt Individuals

The most difficult task in the construction of an APL interpreter based

on the present semantics is the design of the data structure used to imple-

ment APL individuals and the verification of this design with respect to the

formal semantics. The initial design was modified many times in order to

make later parts of the Implementation simpler, more efficient and easier to

verify. A final set of modifications was made to make it possible to prove

the theorems about the implementation that appear in Section 31.2.9, below.

It was a pleasant surprise to find that these last modifications further

simplified later parts of the Implementation.

The discussion of the implementation of APt individuals is primarily

directed toward describing the data structure and to proving that it satisfies

the definition of APt individuals given in Section 21.4 but the presentation

includes some of the problems that were encountered during the design; many

additional design problems are not discussed at all.

Section 31.1 discusses the implementation of APt numbers and characters

and closely follows Section 21.2. It is important to note that the internal

representation of APL characters is independent of the character code of the

host machine. Translations from and into the character set of the host

machine occur immediately after input is read and just before output is

written. This makes it possible to move the present implementation from one

machine to another with minimal changes and to support different terminals

easily. In fact, this implementation was moved from a DECsyste.m—lO to an

I~ 4 System 370 while work on this Chapter was in progress.

The main part of this Section is the verification of the implementation

of APt individuals in 31.2. The discussion begins with simple examples to

introduce the major conceopts and ends with a proof of the correctness of the

implementation.

_ _  
_ __  A



~~~~~~~~~~~~~~~~~~~~~~ . —~~~- 
_ _ _ _ _ _ _ _ _ _ _

109.

31.3 Numbers and Characters

APL numbers , booleans and characters are implemented using the SINULA

type real , that is , floating point numbers. Booleans are implemented as

floating point 0 and 1 and rationals are implemented using floating point

numbers that approximate these numbers. Characters are mapped into float-

ing point numbers using a function that is similar to the pairing function

used in Section 21.2.

In the formal semantics, arithmetic on rationals is infinite precision.

In many circumstances, this arithmetic is adequately approximated by single
precision floating point arithmetic but in some cases this approximation is

inadequate and it is necessary to use extended precision arithmetic. Since

we do not wish to address the numerical analysis associated with a choice of

word length, we have assumed that the single precision arithmetic of the host
machine, as used by the SIMULA compiler, is an adequate approximation of the

arithmetic on rational of the formal semantics. If this approximation is

inadequate, double precision arithmetic may be used by replacing all occur—

rances of the keyword REAL by the keywords LONG REAL in the text of the pro-

gram.

It is possible to implement arbitrary precision arithmetic using an

alternate representation of rationals and procedures for the arithmetic

operators. This approach was rejected because it is extremely inefficient

and because it does not conform to the usual implementations of APL.

Each APL character consists of two simple characters. Let kpl and kp2
be the character codes for the two simple characters that form an APt char-

acter as given in Appendix A. This APL character is mapped into a floating

point number using a function that is described by the expression:

if kpl � kp2
then kp14128 ÷ kp2
else kp2~128 # kpl

The two obvious functions can i1~ used to extract the character codes of the
two simple characters that form the APt character.

If the mantissa of floating point numbers has at least 14 bits , it is

easy to see that this function is a 1—1 into map from APt characters to float-
ing point numbers with a left and right inverse. Further , the floating point
relations less than and greater than , respectively, are equivalent to the re—
Lations ~~~~~ and ~~~~~~~ on APL characters for this implementation of APL

- — --_ _ ----~~~~-~~~~~~~~ - . . --.-- ------ -

110.

characters (see Sections 21.3 and B3).

In order to simplify the following discussion , the SINUtA keyword real
will be used to refer to floating point numbers.

The function that maps APL characters into reals is implemented by the

function encode shown in Figure 3l.la. The return value of the function
kp code is the number of its simple character argument as given in Appendix A.
The exact declaration of kp code depends on the character set of the host
computing machine and the APt terminal that is used. For each such case , it

must be shown that this function has the above property.

REAL PROCEDURE encode(cl ,c2) ; CHARACTER ci , c2;
BEGIN

REAL kpl , kp2;
kpl := kp_code(cl);
kp2 := kp_code(c2) ;
encode := IF kpl <= kp2

THEN kpl * 128 + kp2
ELSE kp2 * 128 + kpl

END of encode;

(a)

TEXT PROCEDURE decode (n) ; REAL n;
BEGIN

TEXT temp;
IF n <= 127

THEN BEGIN
temp :— Bianks(l) ;
temp.putchar (kp c h a r (n)) ;
decode :— temp

END
ELSE BEGIN

temp :— Blanks(3) ;
temp.puchar(kp_char(n // 1 2 8)) ;
temp.putchar (kp_char (back_space));
temp.putchar (kp_char (Mod(n ,12 8))) ;
decode :- temp.strip

END
END of decode ;

(b)

Figure 31.1

—...
~ --—

ill.

The return value of the function kp_chtv’ is the character string (or
text) that is to be sent to an APt terminal to print the simple character

that corresponds to it argument character number as given in Appendix A.

The definition of this function also depends on the character set of the host

computing machine and the APL terminal that is used. The program described

here has been executed on a DECsystem—lO and on an IBM System 370; the only

change made in the program was the definition of kp_oode and kp_char.
An inverse of encode that maps APt characters into their printed form

is used for output . The function decode , shown in Figure 31.lb , implements
this mapping. The parameter of this function is an APL character and the re-
turn value is a text object which , when transmitted to a terminal or file , will
print the APL character. If the APL character is less than or equal to 127,
then the character consists of a single printable character because the second
character in such pairs is character number 0. On the other hand, if the APt
character consists of two characters, then the printed fo rm of the character
consists of three characters: the first character , a backspace and the second
character. (The value of the variable back_space is the character number of

the backspace character as given in Appendix A.) These statements plus the

definition of the SIMULA primit ives putchar , strip , /1 and Mod can be used
to show that decode has the claimed property.

31.2 Implementation of Individuals

In the formal semantics, an APL individual is a single object with five

attributes and each of these attributes themselves have additional properties.

The set of APt individuals is implemented as a SIMTJLA class, called the class
of individuals, and each instance of this class is an individual whose attri-
butes have the same properties as the attributes of APL individuals in the
formal semantics. It is shown that each member of a large finite set of APt

individuals is implemented by an instance of the class of individuals and that
each instance of the class of individuals has all of the properties of an

ALP individual in the formal semantics.

In this chapter, it is frequently necessary to use identifiers from

the Implementation in the text. Thses identifiers appear in light italic so
they can be recognized. Examples of program text appear in Algol publication

format and actual program text , which was printed on a terminal , is exhibited
using upper case keywords and lower case for the remaining identifier s.

~ ~~~~~~~ . _~~~~~~~~~~ - ~~

112.

This section begins with a simple example of a SIMULA implementation of

an APt individual (31.2.1) and this example motivates the definition of a

computer representation implementing an APt individual (3 1.2.2) . This def-
inition is used to show that each APt individual whose attributes can be re-

presented in a mach.~.n e is implemented by an instance of the simple class of

individuals.

The simple declaration of individuals is inadequate because it is not
possible to show that each Instance of the class has all of the properties
of an APt individual. A restricted individual that solves some of the prob-

lems is described (31.2.3) and this declaration motiviates the more extensive

declaration that is discussed in Sections 31.2.4 to 31.2.9. It is shown

that each instance of the class of individuals in the implementation has all
of the properties of an APt individual and that each APt individual whose
attributes can be represented in the host computing machine is implemented by

an instance of this class.

The Section concludes with a discussion of some implementation issues

which greatly simplify the final program.

31.2.1 Example

It is easiest to begin by examining a substantially simplified declaration

of class individual:

class individual(rcmk, cardinality);
value rank, cardinality; integer rank, ccn ’dinaiity ;

begin

integer type;
integer array ehap e[2:r an k] ;
real array eZ.emente[1:cardinality];

end of individual;
When an instance of this class is created, the rank and oax’dina lity of

the new individua l are passed as pat~ameters so that the run time system can
allocate storage for the arrays shape and e lements.

Each instance of this class is a single object and may be the value of

a SIMULA variable [of type ref(individual)J. The integer values of the var-
iables rank, cardinality (IXI) and type correspond to the attributes of APt
individuals with the same names. In the formal semantics, the shape attribute

of an APt individual X is a ~~~j~(X)—tuple of natural numbers and the array

—~~~~ .—-——— -.~~— ---—— -———~- -
~~

-—-
~~

- - ——-.----~‘
. - - - -- ---- --- .

113.

shape corresponds to this attribute. Similarly, the elements attribute of an
APt individual X is a I It —tuple of elements. APt numbers, booleans and

characters are all implemented as reals and, thus, the array elements cor-
responds to the elements attribute of an APL individual.

In s~.~~ary, if b is an instance of class individua l (b is an indi vidual)
then the correspondence between the attributes of b and the attributes of an
APt individual B in the formal semantics is as follows:

Class APt
Individual Individual

b.rank ~~~~~B)
b.shape

b.cca’dinality IBI
b.type ~ p1(B)

b.elemente {B}

b.eiementafi] {B}~

There is an obvious correspondence between one dimensional arrays in
SINULA and ordered n—tuples and this correspondence will be used without
further comment.

This example provides an informal introduction to the more precise treat-
ment of the implementation of APL individuals that follows.

31.2.2 Implementation

Definition. A computer representation of an APt individual is said to

~~plement this individual if it is a single object with the five attributes of
an APt individual and if:

(1) The rank, cardinality and type attributes of the computer repre-
sentation, when interpreted in accord with the representation of

integers in the host machine, are the same as the corresponding
attributes of the APt individual.

(2) The shape attribute of the computer representation has the same
n~mber of components as the shape attribute of the APL individual
and each component of the computer representation, when inter-
preted in ‘accord with the representation of integers in the host
machine, is the same as the corresponding component of the shape
attribute of the APt individual.

I- .— - -..- . . ~~--- --~ .-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-

~~~~~~~~~~~~~~~~~~~~

114.

(3) The elements attribute of the computer representation has the

same number of components as the elements attribute of the APL
individual and if one of the following relations holds, component

for component, between the computer representation and the APL

individual:

(a) If the APt individual is of type boolean, then the component
of the representation is interpreted as a 0 or 1, in accord

with the value of the component of the APL individual.
(b) If the APt individual is of type character, then the component

of the representation, when interpreted for printing on an

output device, is the APL character in the APL individual.
(c) If the APt individual is of type number, then the component of

the realization is the floating point number of the host mach-

ine that is the closest approximation of the rational in the

AlL individual.

A set of APL individuals is said to be implemented by a set of computer repre-
sentations if each APt individual is implemented by a member of the set of
representations and if each representation in the set implements an APt
individual.

This definition will be used to prove statements about a SINULA im—

plementation of APL but it could equally well be used to prove statements
about implementations using languages such as PASCAL, Pt/I, etc.

It is straightforward to verify that the representation of APt numbers,
booleans and characters described in Section 31.1 meets the requirements of

(3a) to (3c).

Each SINtJLA implementation provides the function procedures maxint and
,,vj.xreal whose return values are the largest integer and the largest floating

point number, respectively, that can be stored in a word of the host machine;

these identifiers are used below. The discussion assumes that sufficient

machine resources, e.g., storage, are available.

teimi*a 1. Each APt individual whose rank and cardinality are less than
or equal to maxint and such that each component of its shape is less than or

equal to ma~int , is implemented by a member of individual.
Proof. The lemma is established by exhibiting an algorithm for creating

the appropriate member of individual given an AlL individual that satisfies the

conditions stated in the leimna. It is assumed that the integers one to 

~~~ . .


115.

thirteen (inclusive) can be stored in a single word of the host machine so
that a type number can be stored in a single word.

Step 1. Let r and a, respectively, be computer integers that corre-
spond to the values E~~~(X) and 111 . By the hypothesis of the lemma, r �

riiaxint and a � n~xint. Create an instance of individual by executing the
statement:

x :- new individual(r,c);
By the definition of new and of value parameter transmission, x.rank — r
and x.cardinality — a. Therefore, rank and cca’dinality attributes of x
satisfy (1) of the definition. -

Step 2. Let 8
~
,

~2 ’-~ ’ 8~
be computer integers that correspond to the

components of ~~~~~~ Set the values of the r components of x.ehape using
assignments of the form:

z.ehape[1] :

x.Bhape [2J

X. Bhape [r] : 8~~

After these assignments are executed, the shape attribute of x satisfies (2)
of the definition. If r is zero, then Bhape is not initialized.

Step 3. Let t be the computer integer that corresponds to
Set the type attribute of x with the assignment:

x.type : t;

After this assignment is executed, the type attribute of x satisfies (1)
of the definition.

Step 4. Let u1, u2,..., U be computer representations of the components
of {x} as described in Section 31.1. Set the values of x.elements using assign-
ments of the form:

x.element(1]

x.element[2] : u2;

x.eiement(c] := u~
After thaes assignments are executed , x.elementa satisfies (3) of the definition
because the representations of Section 31.1 satisfy (3a) to (3c).

This completes the proof.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

116.

31.2.3 Restricted Individuals

Unfortunately, this simple declaration of individual is inadequate
because it is not possible to prove that each individual implements an APt
individual. The proof fails because there are members of individual that do
not implement individuals. For example, it is possible to set cardinality
to a value that is not the product of the components of shape. Similarly, it
is possible to set type to 3 when the components of e lements do not corre-
spond to characters under the mapping described in Section 31.1. Moreover ,
even if an individua l is correctly initialized, the attributes may be acci—
dentially changed by the program that manipulates individuals so that it no
longer has the properties of an AlL individual.

It is, in principle, possible to prove that the program which contains
this declaration uses it correctly but this is a long, difficult and error
prone process. It is much simpler to use the protection mechanisms of SIXULA
to make sure that each individual implements an APL individual. The declar-
ation of individual discussed in Section 31.2.3 is a f irst  approximation to the
declaration that is used in the present implementation.

The declaration of individual shown in Figure 31.2 has many of the
properties of the declaration used in the present implementation. It is
presented to make it easier to understand the actual declaration that is de-
scribed In Sections 31.2.4 to 31.2.9.

By the definition of protected attributes in SINULA, each instance of

this class, when viewed from outside the class instance, behaves as though

its only attributes are rank , shape , cardinality , type, and element. The

remaining attributes of the class instance cannot be ‘eferenced outside an

instance of this class. It will be shown that these attributes have the

properties of the corresponding attributes of an AlL individual.

When a member of this class is created, three parameters are passed:

the rank of the new individual (rn k) , the shape of the new individual (ehpe)

and the type of the new individual (typ). These parameters are transmitted

by value so the copy inside the individual is different from the external

copy. These attributes are protected so they cannot be changed after the

individual is created . The cardinality of the new individua l is not a
parameter so that it can be correctly computed when the individual is created.

The next step in the creation of an individua l is storage allocation

for the integer card (which will contain the oardinality) and the elements



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~

— .

~~~~~

- --- - -

117.

class individual (rnk, shpe, typ) ;  value rnk, ahpe, typ;
Integer rnk, typ; integer array shp e;
not protected rrr#zk,

shape ,
cardinality,
type,
element;

begin
integer card;
rea l array elernante(1:compute_cardl;

integer procedure rank;
rank :— rnk;

Integer procedure ehap e (i) ;  value i; integer i;
shape :— shpe(il;

integer procedure cardina lity;
cardinality :- card;

integer procedure type;
type :— typ;

real procedure element(i); value i; integer i;
element :— eiementa[i];

integer procedure compute card;
begin

integer j;
card :— 1;
for j  :— 1 step 1 until rnk do

card :— card ’~ehpe [j ] ;
compute_card : = card;

end of ccviipute_card;
if 0 < typ or typ > 13

then Abort(”INIIVIDUAL: Invalid type.”);
If 5 � typ and typ � ii and (rnk ~ 1 or shp e [ 1 ]  ~ 0)

then Abort (”INDIVIDUAL : Invalid Special Individual. ”)
else card : 0;

lf rnk — Oand shpe (1 J ,’0
then Abort ( ”INDIVIDU AL; Invalid scalar. ”)

end of individual;

Figure 31.2 

..— . . - -
~~~

. - - - - -- - - - -
~~~~~~~~ .—-~~~~~~~~~~

.--— - .---~~- --- .-
~~~~

-,
~~~~~~~~~

--



~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

118.

array. The function compu te_card is called to compute the upper bound of the
array . It is straightforward to verify that the following things happen
when the function compu te_card is called. If the value of rnk is zero ,
then card is set to one; otherwise it is set to the product of the first rnk
components of shpe ; card is also the return value of the procedure. Two

errors may occur at this point: If Bhpe has more than rnk components, all

components of ehpe after ahpe(rnk] will, be ignored in the computation of card
so the instance satisfies the definition of an APt Individual. On the
other hand, if slips has less than rnk components, then execution will be ter-
minated as a resul t of an array bound error. Therefore, if the program is in
execution after storage allocation is complete, the individual has the correct

relationship between its rank, shape and cardinality. (see statements (3)
and (4) in the definition of AlL individuals, Section 21.4.1

The last step in the creation of an individual is the execution of the
statements in the main block. Each of these statements will terminate execution

using the procedure Abort if the individual does not satisfy the definition
of an AlL individual. The first statement checks to see that the type is
acceptable (21.4, clauses (1) and (2)]. The second statement checks to see

that the special individuals have the proper type (definition of special and

destinguished individuals , and clause (1)] and sets the cardinality of such

individuals to 0. The third clause checks to see that labels have the proper
attributes (clause (10) of 21.4] and the fourth clause checks to see that
scalars have the appropriate attributes (clause (3)]. The components of
elements satisfy the requirements for components of the elements attribute
because these components are initialized to zero and this is an acceptable

boolean, number or character. Therefore, if an individual is created and
execution continues to the end of the creation process, this new individual

has the properties of an AlL individual because it satisfies the def inition
given in 21.4.

It is straightforward to confirm that the procedures rank, type and
cardinality have the corresponding attributes of an APL individual as their
return value. The attributes shape and e lement provide access to the com—
ponents of the corresponding attributes of the individual. The storage

locations that contain the values of the attributes of the individual are
protected and, therefore, they cannot be changed by any program which manip-

ulates individuals. Since each individua l is created with the correct values

_ __ _ _ _
~~~~ - -~~~ - . . .

119.

for its attributes and these attributes cannot be changed , it has been shown
that:

Lemma 2. As long as execution continues, each instance of class
ndividua l , as declared in Figure 31. has the att ributes of an APt individual.

It is straightforward to modify steps 1, 2 and 3 of the algorithm in the
proof of Lemma 1 for use with this declaration of individual. However, step 4
cannot be modified in a satisfactory way because it is impossible to change
the values of components of e lementa after an individual is created. This
problem can be avoided by adding another (not protected) procedure attribute ,
set_e lement , to the declaration of individual. Here is an example of such a
declaration:

procedure set_e lement(i ,v); value i, v;
integer i; real v;

if ( typ > 3 and typ < 13)

then Abort(” INDIVIDUA.L: Element assignment prohibited.”)

else if typ = 1 or
( typ = 2 and (v = O o r v = 1)) or
(typ 3 and (0 � v and v ~ 16383))

then e lements( i] := v

else Abort(”INDIVIDUAL : Element out of range writing .”);
If the value that is to be assigned to a component of e lements does not meet
the requirements for a component of the individual, then execution is termi—
nated. Similarly, if the component number is not a correct subscript for
elements , execution is terminated because a subscript is out of range.

These remarks are an outline of a proof of the statement that individuals
with this procedure attribute remain individuals as long as execution continues.

Although the declaration of individual in Figure 31.2 is adequate , it has
not been adopted for a number of reasons . First , there are far too many
errors that result in termination of execution , an unacceptable attribute of
any implementation. It is far preferable to use a declaration with the prop-
erty that the compiler will detect all errors so there will not be any run
time terminations. The declaration that is used in the implementation almost
meets this requirement . Second, this declaration provides an extremely inef—

f lent implementation of AlL individuals. The overhead associated with the

complicated checks in set_e lement and the checks when an individual is
created is substantial.



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_____  _____  _ _ _ _ _ _ _ _ _ _ _  — -

120.

The ideas used in this declaration play an important part in the declar-
ation of individual as it is used in the present implementation. The running

version of the declaration is discussed in Sections 31.2.4 to 31.2.9.

31.2.4 Class Individual
The structure of class individual, as used in the implementation, is

shown in Figure 31.3. Each node of the tree corresponds to a class and the
decendants of a node correspond to subclasses of the parent node. This
structure was selected to reflect the various parts of the definition of the

set of individuals, to provide adequate security and to simplify the coding

and verification of the remainder of the implementation.

&‘L individuals of type number (1) , boolean (2) and character (3) are
usually manipulated by AlL programs and individuals of these types are group-
ed together as subclasses of individual class usual. Since it is often nec-

essary to inquire if an individual is of type number or boolean, these two

classes are grouped together as subclasses of c-lass numerical.

Except for their type, the special individuals have the same attributes

so they are all subclasses of individual class special. The spe cial individuals
are further divided into the class of distinguished individuals and the e_vector.

AlL individuals of type label and function definition have restrictions
on their attributes that are quite different from other APt individuals and ,
therefore , they are seperate subclasses of class individua l.

The declaration of class individual, shown in Figure 31.4 , defines the
external attributes of individuals. The protected declaration limits the
attributes that are accessible outside individuals to the five attributes of
APt individuals plus the procedure set_element which is used to change the

value of components of the (inaccessable) elements attribute. Each of these
procedure attributes have different declarations in different subclasses of

individual so they are declared as virtual procedures. By the definition of
virtual, the procedure that will be used with a particular individual is
the lowest one in the tree of Figure 31.3.

k - - — - . -—~~~-~~~~~~~~~ -- -



_____________________________ -

~

- --- - -

~~~~~~~~~~

-- - -

121.

INDIVt~ .Ml.
-

~~
v

7~~~~~~~~~~~~~~~~~

USUAL F JNCTION_XFIETI~ I APL LASEI. SPECIAL

N A
N$IIERICAL APL_O4ARACTU DISTINGUISHED E_VECTGR

APL JIIJSZR D RROR R_ERROR LJRROR I_,ERROR V_ERROR S,,,,ERROR

Figure 31.3

_ _ _ _ _ _ _ _ _ - - - ~~~~~~~~~~~~~~~~~~~
- -- - - - ~~~~

—--
~~~~~~~~~~~ - -~~~



~ 
122.

class individual;
not protected rank ,

shape ,
ccwdinality ,
type,
element,
set_element;

virtual : integer procedure rank ;

integer procedure shap e;

integer procedure cardinality;

Integer procedure type;

rea l procedure element;

p rocedure set element;
begin end;

Figure 31.4

31.2.5 Usual Individuals - -

The declaration of individual class usua l is shown in Figure 31.5. The

declaration of the attributes of this class are the same as the declarations
of the attributes with the same name in Figure 31.3 and , therefore, they have
the same properties. The rank , shcrpe, cardinality and element attributes of
individuals of type number, boolean and character are the same so they are de-
clared at this level. A similar statement applies to the internal variables

card and elements.
Notice that this class declaration has two parameters: the rank and shape

of the individual to be created. The parameter for the type used in Figure
31.2 is not needed .

The declarations of classes api_number and apl_boolean are shown in
Figure 31.6. Class nwneriaa l slmp1y~ serves to group classes ap l_boo lean and
czpl_nwnber into a single class and , therefore , its declaration consists of the

empty block.

The type attribute of an apl_nwnber is simply an integer procedure that

returns the value 1. Any real may be a component of the elements attribute of

an api_number and, therefore, the procedure set_element simply changes the
value of the appropriate component. If the first actual parameter of

_ _  _______ _ _ _ _ _



~

123.

individual class usual (rnk , shpe); value rnk, shpe;
integer rnk; integer array shpe;

begin
integer card;
real array e lements(1:conrpute_car d] ;

integer procedure rank;
rank :- rnk;

integer procedure ahape (i) ;  value i; integer i;
shape := ahpe[iJ ;

integer procedure cardinality;
cardinality : card;

real procedure e lement (i) ;  va lue i; integer i;
e lement : e lements[i];

integer procedure conrpute_card;
begin coment As in Figure 31.2; end;

if rnk C and ehp e [ 1]  # 0
then Abort(”INDIVIDUAL : Invalid scalar.”)

end of usual;

Figure 31.5

8et_e lement is not a legitimate subscript for the array elements, then the run

time system ‘will terminate execution with an error message.

The type attribute of an ap l_booieczn is simply an integer procedure that

returns the value 2. The components of the elements array of an api_boo lean
must be either 0 or 1 and the procedure set_element will terminate execution

if an attempt is made to set an element to another value. As is for ap i_
numbers, execution is terminated If a subscript is out of range .

The declaration of usz~T class api_character is shown in Figure 31.7.

The type attribute of an apl Char~2Ote~r is simply an integer proceudre that re-
turns the value 3. The proceudre set_element checks to confirm that the new

value of a component of the ar ray elements is a real that corresponds to an APL
character under the mapping described in Section 31.1.

In all of these classes , the only way that a component of the array
elements can be changed is by means of the procedure set_e lement . This pro-

cedure will terminate execution if a proposed new value violates the definition

-- --4



-:—--~ - -
~~~~~ ~

- -_ --—.—--
~~~~~~~

— - -
~~~~~~~~~~~~~~~~~ 

_ -

~~~
-

~~

- -—_

~

-_--— 

~~~~~~~~

-- -—

~~~

_ -

124.

usual class numerical;
begin end;

numerical class apl_nwnber;
begin

integer procedure type;
type : 1;

pr ocedure set eiement(i,v); value i,v;
integer i; real v;

eiements(i]:= v;

end of api_number;

numerical class apl_boolean;
begin

integer procedure type;
type : 2;

procedure eet_e lement(i,v); value i,v;
integer i; real v;

if v = 0 or v = 1
then elements(i] : v
else Abort(”INDIVIDUAL: Boolean out of range .”);

end of api_boolean;

- Figure 31.6

usual class api_character;
begin

integer procedure type;
type : 3;

procedure eet_e lement(i,v) ; value i,v;
if 0 � v and v � 16383 and (v// 128) � mod(v,128)

then element(i] :~ velse Abort(”INDIVIDUAL: Character out of range. ”) ,

end of api_character;

Figure 31.7

I

~

-

~

-- -- - - - - - --~~~~--~~~~~----- ~~~~~~~



r

125.

of an APL individual.
It is straightforward , but tedious , to verify the above statements in

detail so the more detailed arguments have been omitted .
Lemma 3. Each individual of type 1, 2 or 3 whose rank and cardinality

is less than or equal to rnaxint and such that each component of its shape is
less than or equal to ma~int, is implemented by a member of class ap l_nwnber,
apl_boolecm or api_character, respectively .

Proof. The proof of this l e a  is very similar to the proof of Lemma 1.
A proof for an APt individual of type 1 (number) is given; the other two cases
are essentially the same.

Step 1. Let r be a computer integer that corresponds to the value of

~~~~ Z) and let s be an integer array with r components that contains the
components of ~~~~~~~~ Create an individual by executing the statement:

x :— new api _nwnber (r ,a) ;
By the definition of new and of value parameter transmission, the variables

rnk and shpe will be copies of r and a. It is straightforward to verify that
these attributes are available outside x using the procedures rank and shape.
It has already been shown that the value of card is computed correctly and that
elements is created with the correct number of components. This means that
the proceudres cca’dinality and element correctly transmit the values of the

corresponding attributes. The procedure type always returns the value 1, as

required.

Step 2. Let e be an array of aardinality components such that e l i] is

the value of the ith component of the elements attribute of the APL individual.
Execute the following statement:

for i : 1 step 1 until car dinal ity do
set_e lement(i,e(i));

It has already been shown that the result of executing aet_eiement(i,v) is to
change the ith component of elements to v provided that u is an acceptable

value. Since each APL individual meets the requirements of the definition
given in Section 21.4 , all assignments will be done without error.

By definition of implementaion , this new individual implements the

given APL individual.

Lemma 4. As long as any program containing the declaration of individual
in Figures 31.4 to 31.7 is running without error termination , each member of
api_number, ap l_boo iean and api_character implements an APt individual.

— - - -

~

- - - - - — -

126.

Proof. It must be shown that each instance of these classes satisfies

clauses (2) to (7) of the definition of APt individuals given in Section 21.4.

(2) The declaration s of the procedures type are such that only 1, 2 or
3 are returned.

(3) It has been shown that if rnk is 0 then card is set to 1. These

values are transmitted by the procedures rank and cardinality. If the first
(and presumably only) component of ahpe is not 0 when rnk is 0 , the statement
in usual will terminate execution.

(4) It has been shown that the value of card is set to the value

specified and this value is transmitted by the procedure cardinality.
(5) By the definition of implementation , a member of the set of rationals

is implemented by a real. All components of elements in ap i_number must be

reals as a result of SIMULA variable type checking . These are the only
individuals of type 1.

(6) The only individuals of type 2 are api_booleciza. The components of
the e lements array are initialized to 0 and the procedure set_e lement of

ap i_boo leans permits only the assignment of the values 0 or 1 to components
of elements. Therefore , all instances of ap l_booiean and all individuals of

type 2 satisfy this requirement.
(7) The only individuals of type 2 are crp i_characters. The components

of the array elements are initialized to 0, a number that corresponds to a
character under the mapping of Section 31.1. The procedure set_e lement of

api_characters permits only the assignment of reals that correspond to
characters under the mapping of Section 31.1. Therefore , all instances of

api_character satisfy this requirement.

This completes the proof .

31.2.6 Special Individuals
The declaration of individual class epecial is shown in Figure 31.8.

Since all of the special APt individuals have the same rank, shape, cardinality

and elements attributes , these attributes are declared in class special. Ob-

serve that all of these attributes are included in the declaration so it is

Impossible to create an instance of a special class with the wrong value of

ona of these att ributes. A compile error will occur if parameters are passed

to these classes whsn an instance is created.

__________ --_ - -

127.

individual class specia l;
begin

integer procedure rank;
rank := 1;

integer procedure ehape (i) ; value i; integer i;
shape :z 0;

integer procedure cardina lity;
cardinality a 0;

real procedure elsmsnt (i) ; value i; integer i;
e lement :a 0;

end of specia l;

specia l class 8_vector;
begin

integer procedure type;
type : 5;

end of e_vector;

Figure 31.8

The special classes differ only in their type attribute. The declaration
of special class s_vector also appears in Figure 31.8. This declaration con-
tains only an integer procedure that returns the type number, 5 for an e_vector.

The special class distinguished, declared in Figure 31.9, serves only
to group the distinguished individuals into a single class and, therefore, its
declaration consists of an empty block. Each of the diatinguiahed individuals

-:

is a subclass of this class and consists of a procedure type that returns the
appropriate type number.

Lesma 5. Each special APL individual is implemented by an instance of
the class individual as declared in Figures 31.4 , 31.8 and 31.9.

Proof. To create an Implementation of an APL individual of type domain
error (type 6), execute the assignment:

: - new d_error;
By inspecting the declaration of individuals of this type , it is straightforward
to verify that x has the attribute required of such an individual in Section
21.4. A similar argument applies to the remaining special individuals.

Lames 6. In any program containing the declarations shown in Figures

31.4 , 31.8 and 31.9 , each member of s_vector, d_error, r_error, 1 error,

128.

i_error, v_error and a_error implements an APt individual.
Proof. When a member of these classes is created , it has the correct

attributes and it is impossible to change these attributes . This statement
can be verified by comparing the declaration of the definitions of the
special individuals in Section 21.4.

In the implementation, there is a variable empty_vector whose value

is an instance of class e_vector and this one instance is always used when an
empty vector is required. Similarly, the value of the variable dc,nain_error
is an instance of class d error and this one instance is always used when the
individual DCf dAIN ERROR is needed . The same statement applies to the variables
rank error , length_error, indez_error, value_error and syntax_error with

respect to classes r_error, i_error , i_error , v_error and s_error and the

the corresponding individuals.

31.2.7 Labels
The declaration of individual class api_labe l is shown in Figure 31.10.

All APL individuals of type label (type 13) are required to have the same rax~k ,
shape , cardinality and type attributes and these values are included in the
declaration . The single component of the elements attribute must be a positive
integer. The parameter e is the elements attribute of instances of api_label
and the type checking mechanism of ~~~~~~ forces this value to be a real repre-
sentation of an integer. The if statement in the block terminates execution
if a negative integer is passed as the parameter.

It is straightforward to prove the following lemmas :
Lemma 7. Each APt individual of type label (type 13) is implemented by

an instance of class individual as declared in Figures 31.4 and 31.10.
Lemma 8. As long as any program containing the declaration of individual

in Figures 31.4 and 31.10 is running without error termination , each member
of api_label implements an APt indivldual.

—-—~~~— ~~~~---...~~~~~~~~~~~ ~~- - —.- -~~~~~~~-

r 129.j

specia l class distinguished;
begin end;

distinguished class d_error;
begin

integer procedure type;
type: 6;

end of d error ;

distinguished class r_error;
begin

integer procedure type;
type : 7;

end of r_error ;

distinguished class i_error
begin

integer procedure type;
type := 8;

end of 1_error

coment The declaration s of the remaining
distinguished e laments are similar.;

Figure 31.9

_ _ _ _ _ _ _ _ _ _ _ _ _ - —-•-

~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~
~—



130.

individual class ap l_labe l (e) ; value e; integer a;
begin

i nteger procedure rank;
rank : 0;

integer procedure ahape (i) ;  value i; integer i;
shape : 0;

integer procedure cardinality;
cardinality : 1;

integer procedure type;
type := 13;

real procedure e lement(i) ; va lue i; integer i;
element := a;

if a <1
then Abort(”INDIVIDUAL: Invalid label. ”)

end of ap i_label;

Figure 31.10

31.2.8 Function Definitions
The declaration of individual class function_definition, as used at

this stage of the implementation is sketched in Figure 31.11. It can be
shown that each member of this class satisfies the requirements for function
definition geven in Section 26.2 and that each APL individual of type function
definition that meets these requirements is implemented by a member of this

class.

This class declaration is only used in Chapter III; it will be replaced

by a more elaborate definition that is adequate for the full function def in—

ition mechanism of APL in Chapter V. ’ Therefore, a proof of the properties of
this class is omitted; they are simply stated as propositions.

Proposition 9. Each APL individual of type function definition (type 12)

is implemented by an instance of class individual as declared in Figures 31.4
and 31.11.

Proposition 10. As long as any program containing the declaration of

individua l in Figures 31.4 and 31.11 is running without termination, each

_ _ _  - . ~~~ .



- 
- _

131.

individua l class f unction_definition (e lements) ;
value e lements; real array e lements;

begin

integer procedure rank;
rank : 1;

integer procedure shape (i) ;  value i; Integer i;
i f i = 1

then shape := 2
else Abort(”FN DEF: Shape subscript out of range.”);

integer procedure cardinality;
cardinality : 2;

integer procedure type;
type : 12;

real procedure element(i) ; value i; integer i;
l f i = 1  ori 2

then e lament : = a laments [i]
else Abor tC’FN DEF: Element subscript out of range.”);

if not~ <elements contain function definition >
then Abort (”FN DEF: Creating invalid function definition.”);

end of function _defir.ition;

Figure 31.11

member of f ioi.ction_definiti on implements an APL individual.

31.2.9 Theorems

The following theorems assert that the present implementation of APL
individuals is correct in the sense that each member of individual has the
properties of an APt individual as long as the program is running without
error termin ation . In the following sections, it will be shown that the
conditions which cause er ror termination cannot arise. Hereafter , unless
there is a need to make a careful distinction, it will be assumed that each
individual in the implementation is ~he same as an APL individual in the
formal semantics ..,,

Theorem 1. Each APL individual whose rank and cardinality are less than
or equal to rnaxint and such that each component of its shape is less than or
equal to maxint i. implemented by an instance of individual as declared in
Figures 31.4 to 31.11.



~
-- 

- - -

132.

Proof. By lemmas 3, 5 and 7 and proposition 9.
Theorem 2. As long as any program containing the declaration of

individua l in Figures 31.4 to 31.11 is running without error termination ,
each individual created using ap i_number, ap l_boo lecm, api_character,
e_vector, cl_error, r_error, ;_error, v_error , s_error , ap i_labe l or
function_definition implements an APL individual .

Proof. By lemmas 4 , 6 and 8 and proposition 10.

Corrolary. As long as any program containing the declaration of

individual in Figures 31.4 to 31.11 is running without error termination, if
there are no occurences of new applied to individua l, usual, numerical,
special or distinguished, then the value of any variable of type individual
(that is, a ref (individual)) implements an APL individual.

31.2.10 Implementation Details

The declaration of individual ised in the proof of theorems 1 and 2 is
almost exactly the declaration used in the Implementation . There are a few
differences that make it easier to use individuals but these changes do not

modif y the proofs of the leimnas and theorems.

In the imp lementation, each i.ndividual has an additional procedure

att ribute output which writes the individual on the user’s terminal in a

f ormat that closely resembles the output from the DEC and IBM implementations
of APL. This procedure uses a procedure output_single_element that is declared

in each class that is a leaf of the tree in Figure 31.2. It has been shown

that these procedures have the properties claimed but the proof is not pre-

sented here because these procedures will be replaced in Chapter VI when

~ZE~~~ (v) is defined.
The second change appears to be a fundamental change in the structure

of individua l but it is actually a significant simplification of the implemen-
tation. The type attribute of individuals is omitted in the imp lementation
because it is not needed. The ~~~~ attribute of an APL individual is used in
tow places in the formal semantics: The 

~~ 
attribute is used to check for

error conditions in the definitions of primitive functions and to set the

~~ 
att ribute of the value of a primitive functions.

The definitions of primitive functions contain occurrences of formulas
of recursive arithmetic of the form: 

~~~~~-- - - - - - _ ~~~~~~~ -~~~~~~~


133.

type (B) A ’ {5 ,6,.. . ,ii}
type (B) A ’ {6 ,7,..., U}

type (B) A ’
type (B) 3

If b is an individual, then the following SIMULA boolean expressions have the
same truth value (in the same order) ;

b in special
b in distinguished
b in numerica l
b is ap i_charac ter
It is easy to see why this is the case . For example, consider the

first expressions . By examining the declaration of individual it can be
ver i f ied that the only individuals with a type attribute such that 5 type
5 � type � 11 are members of special or of special class distinguished. By

the definition of in, the expression b in special is true just in the case
that b is in special or b is in distinguished. This means that this expression
is true exactly when 5 � type � 11 as required. Similarly, the only individuals
with type ~ 3 are members of ap l—character. By the definition of is , b is
ap i_character is true only if b is a member of ap i_character and so the two
expressions have the same truth value . A similar argument applies for the
remaining expressions.

This use of subclasses provides a significant simplification. For
example, when the formal. semantics contains an expression of the form:

then

~~ ~y~~(B) -3

then

a straightforward implementation of this test for an individua l b is:

— - - - - - - - - - - - -~~~~~~~~ --- -_ ---_ - - - -- _ -_ - --_ --_ - - - - - -

134.

if b.type = 1

then ... else
If b.type = 2

- then ... else
If b.type = 3

then ... else

However, using subclasses, the definition is implemented as follows:
inspect b

when ap i_number do
when apl_booZean do
when api_character do

This construction is much easier to understand and is equivalent to the first

implementation.

By the definition of the inspect statement, the first when clause such

that b is in the class named after when is executed and the remaining when
clauses are skipped. This is exactly what happens when the nested If state-
ment is executed.

By the defin~ton of the SINULA Inspect statement, the first when clause
such that b is in the class named after th. keyword when is executed and the
remaining when clauses are skipped. This is exactly what happens during the

execution of the nested If statement since the class names correspond to the

type numbers. Therefore, the Inspect statement is equivalent to the if state-
ment.

The second place that the ~~~ attribute is used in the formal semantics
is to set the type of the individual that is the value of a primitive function.

This is in a context such as the following:

~~~~~~i e
rank(Z) : ~~~~~~B)
shape(Z) : ~~~(B)

~y~!(Z) 
: 

~ZE~(B)
In the implementation an array s containing ~J~ p~ (B)  is created with a state—
ment of the form

for i := I step I unti l b.rank do
e[ i) : b.shape(i);

I

— — - —- - -

~

- .-_ . — - - -_- _ -
~~~ — --- --- ~~~~~~

- ---~~-—-- --~~~~~~~
-—

F
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

135.

and then a new individual could be created with a statement of the form:

if b.type l
then a :- new ap l_nwnber(b.rank,s) else

if b.type 2

then a :- new apl boolecxn(b.rank ,e) else
if b.type 3

then a :- new ap l_character (b.ro zk,s) ~
By the above argument , a more readable and equivalent form of this statement
is:

inspect b
when ap i_num ber do a : - new api number (ronk,s)
when apl_booieon do a : - new apl_booleon(ronk, s)
when api _character do a : - new ap l_charac ter(rcoik, s);

(An otherw ise clause is not needed here because the type of b is known to be

one of these types when the statement is executed.]

Although a type procedure is not needed , it is straightforward to write

such a procedure. Here is an outline of such a declaration :

intege r procedure type (x) ; ref (individual) x;
Inspect x

when api_number do type : 1
when ap i_boo lean do type :~ 2
when api_character do type : 3

when e_vector do typ e : 5

when s_error do type := 11

• when function_definition do type : 12
when ap i_labe l do type : 13;

1
L. 

_ _ __ _ _ _ _  J



__ _ _ _ _  _ _ _  ~~~~~~~~~ -

A-17.

APPENDIX E
INTRODUCTION TO SIMULA

This Appendix provides a brief introduction to SIMULA—67 so that the
present volume will be self—contained. Dahl [1] provides an excellent
description of SIMULA and its application in many different programming

problems.

Sfl4IJLA may be thought of as Algol—60 without Own variables and with

value as the default parameter passing mechanism augmented by the concept
of a class. Classes are used to provide security for programs, to provide
arbitrary data structures and coroutines as well as to provide for easy

construction of simulations. The following discussion addresses those
aspects of SIMULA that are used in this work .

El. Classes

The basic idea of the class mechanism is that is provides a means for
creating instances of blocks that remain in existence when control leaves
the block and for naming such block instances as well as the procedures and

variables that are inside such blocks .
A good starting point for explaining classes is procedures. The

declaration of a procedure provides a template for creating a block instance

of the procedure body . The local variables of the procedure are declared

inside the procedure and the referents of global variables are determined

by the location of the declaration in accord with Algol’s static scope
rules . When the procedure is called , the block that is the body of the

procedure is created including storage allocation for the local variables

and parameters, and the parameters are copied tnto the block instance in
the appropriate way. After this, control moves to the first executable

statement of the main block of the’ procedure. After the body of the pro—

cedure is executed, the block that is the body of the procedure is deleted .

[The code still exists in the core image but it is inaccessible except by

calling the procedure again.]

The declaration of a class is similar to the declaration of a pro-

cedure; it is a template for creating a block instance. Here is an example:

_ _



_ _ _ _ _--  -

A—].8.

class Foo(x,y ); value x,y; Integer z; real y;
begin

Integer a,b;
real c;

integer procedure f(d); value d; integer d;
begin ... end;

a : x+y;
b : x’4
c : y~~2end

The variables x and y are formal parameters’ of the cu ss In the same way

that procedures have parameters. The attributes of Foo are the variables

x, y , a, b and c as well as the procedure f .
A class declaration should also be thought of as a declaration of

a data type and it is possible , and indeed necessary, to have variables of

this type. For example , if Foo is declared as above , the following declar-

ation are legal:
ref (Foo) alpha, beta;
ref (Faa) a ‘ray ganvna[1:n,1:m];

The range of these variables is blocks created in accord with the template

provided by the declaration of Foo.
It is easiest to describe the creation of class instances by means of

an example:

ref (F oo) alp ha, beta;
alpha :-new Fo o(3,4) ;
beta :-new Foo (1,2)

The character :- is the assignment operator for ref variables.] When the

assignment to alp ha is executed, an instance of class Foo (that is , a block)

is created. Storage is allocated for the variables and parameters . The

parameters are passed and then the body of the block is executed. After the

body is executed, the block remains in existence and the block is the value
of a lp ha. Control then passes to the next assignment statement. In a

similar way when the second assignment statement is executed a second in-

stance of the block described by the declaration of Foo is created and be-
comes the value of beta.

These two blocks are different! In the block alp ha, x~3, y 4, a ?,
b 1 2  and c 1 6  while in block beta xzl, y~2, a 3 , b 1  and c~4. In addition , 

~~~~~~~~~~~~ ---- —~~~~ — - ~~~~~~~~~~~~~~~ —


-~ - - - - - - - _—--~- - -~~ _ -

A-19.

if any of the variables x, y, a, b or c are global variables inside procedure f,
executing f from these two blocks might well give different results.

It is possible to refer to the attributes of both of these blocks .

For example , alpha.x refers to the attribute x of block alpha and beta.x
refers to the attribute x of block beta , e.g., alpha .x—3 and beta.x—1,
alpha.a 7 and beta.a—3, etc . The procedure in these blocks is called in the

usual way; here are ~r~tiples:

w := alpha.f(i);

q :~ beta.f(i)
These blocks remain in existence until one of two things happens:

(1) The block in which a lp ha and beta are declared is exited so the variables

alp ha ~nd beta no longer exist. (2) The variables alpha or beta are assigned
another value and there is no other variable that has the block as its value.

There is an empty block called none which has no attributes and which

can be the value of any ref variable. For example, after the statement

alpha :- none
is executed alpha has the value none . If no other variable has the block

that was the value of alpha as i ts value , then this block is destroyed.

Likewise, if the statement

alp ha :- beta
is executed , then the value of alpha and beta are the same block and the old

value of alpha may be lost. If this statement is followed by

beta :- none
then alpha refers to the old value of beta and the empty block is the value

of beta.
The symbols —— and “I— are, respectively, the equality and the non—

equality operators for ref variables. The value of the expression

alp ha beta
is true if al p ha and beta refer to exactly the same block. Otherwise

alpha /~ beta
has the value true. 4

The use of classes to construct and manipulate data structures is best

r - _ _ _ _ _ _ _ _ _
_ _

A-20.

described by giving examples. As an example of a data structure built with

classes, consider a binary tree. A class Node is declared as follows:
class Node(data); character data;
begin

ref(Node) left_eon, right_son;
left _son :- none;
right_son :- none

end
These Nodes have three attributes: (1) a data object, (2) a left son

pointer and (3) a right son pointer.

Suppose the tree shown in Figure E2.l has been constructed and that

this tree is the value of the ref(Node) variable a. Inserting a Node with
data ‘Z’ as the left son of the Node marked by the arrow is accomplished by;

temp :- a;
whi le temp.left.scn ~ none do

temp : - temp. left_eon;
tem’p .left_aon :- new node(’Z’)

The data attribute of the Node marked with the circled arrow is referred to
by

a. left_son. right_son, data
(These examples assume that the value of a is the root of the tree.)

_

a

_ _

TI II L I 1I ’~~1I
II ~~I 1

Figure E2.l

A—2l.

It is important to note that procedures can be attributes of Nodes in
a data structure and it is not necessary for all Nodes of a data structure to
have the same attributes. Suppose a type node which refers to both tree nodes
and linked list nodes is needed and that both nodes must have a procedure
attribute print that prints the data of a node of either kind. The following
declarations meet these requirements

class Nodee(data); character data;
beg in

procedure print;
begin

outchar (data); outimage
end

end;

Nodes class tree_node;
beg in

ref (Nodes) left_eon, right_son;
left_son :- none
right_eon :- none

end;

Nodes class List_node;
begin

ref (Nodes) next;
next :- none

end
As a result of these declarations, the attributes of a Tree_node are: print,
data, left_eon and right_son and the attributes of a List_node are print,
data and next . Moreover, in spite of the restrictive typing of SIMULA, a
Tree_node may be the value of next in a List_node and a List_node may be the
value of left_son or right_eon in a Tree_node.

Here are some examples of the use of these subclasses:
ref (Tree _node) a ipha;
ref (List_node) beta, goirina;
alp ha :- new T-ree_node(’a’);
beta :- new Liet_node(’b ’);
gmina :- new Liat_node(’c’);

~~~~~~~~~~~~~~~~~~~ --~~~~~~

- _
~~~~~~~~ — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-- - -—

-—

~~~~~



- -~

A—22.

These nodes can now be connected together:
alp ha.t..ft _eon :- beta;
alpha.right_son :-

to give the data structure shown in Figure E2.2.

alpha a

beta b none c none

Figure E.2.2

Additional nodes could be added to the data structure by executing:

beta.next :- new Tree_node ( ’d ’) ;
ganrm’i.next :- new List_node( ’e ’) ;

to give the data structure in Figure E2.3.

beta~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ e

Figure E2.3

There are three points to be made about these examples.
(1) If a class is a sub—class of another class it has its own attributes

as well as the attributes of its parent class(es).

(2) Elements can be arbitrarily mixed in a data structure.

(3) The procedures that are attributes of nodes of the data structure can

be executed. For example, in the data structure of Figure E2.3, executing

the procedure call

beta.print;
will write the character ‘b’ on the output listing using the procedure

p rint that is an attribute of all Nodes.

- — 
_ _ _  - _ _ _ _ _ _  -~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -

A—23.

~~~~~~ m~~~~~~j~cati~~

A number of operations and statements specifically designed to facil-
itate the use of classes and sub—classes are provided.

The relational operators Is and in are used to determine the class
membership of an object. If x is a ref variable and Foo is a class , then
the expression

x is Foo
has the value true if the value of x is an instance of Foo, and the ex-
pression

x In Foo
has the value true if either z Is Foo is true or if the value of x is an
instance of a sub—class of Foo . Assuming the above declarations and assign-
ments for alpha, beta and gcuivna, here is the truth table for IS:

is Nodes Tree-node List-node

aipha false true false
beta false false true
g~’tria false false true

and the truth table for in:

in — Nodes Tree-node List-node

alp ha true true false
beta true false true

g~~ria true false true

The operator qua is used to tentpotatily requalify a ref variable fc~r• the purpose of accessing sub—class attributes. Here is an example of th
kind of problem that requires the use of requalification.

Suppose the declarations of alp ha, beta and g~~ria in the above example
had been

ref (Nod&s) alp ha, beta, g~wna;
Variables declared in this way may have instances of the subcla sses of Nodes
as well as instances of Nodes itself as their values. Thus the subsequent
assignments

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - - - ----- -~~~~~~~~~~~~ - - ~~~~~~~ -~~~~~~~~~~~ - - - — —~~~~~~~~~~~~~ _ _ _ _ _

V - - . - - -_ —- -
~~~
-— --- --

~ ~~~~~~~~~~
- -

~~
- .

~~~~~~~——- - -  --— -
~~~~~~~~~

A—24.

alpha :- new Tree_node(’a’);
beta :- new Liat_node( ’b ’) ;
g~ ivTa :- new List_node(’c’)

are all legal. The two assignments

alpha.left_eon :- beta;
alpha. right_son : - gcmrna;

however , are illegal, as are the assignments
beta.nezt :- new Tree_node(’d ’);
g~ irna.next :- new Liet_node(’e’);

The problem here is not with the actual assignment operation but with the
attribute references

aip ha. left _son
aip ha. right_son
beta. next

gc~?ra. next

Since aipha, beta and g~~rna were declared Nodes, they are only known to have
the attributes data and print of Node s , in spite of the fact that their actual
values have additional attributes. Therefore, the expression

alp ha. left_son -

for example, results in a coinpilier error message to the effect that left _son
is not an attribute of Nodes.

This situation is a result of the complete type and reference checks
that are performed by the compilier to increase program reliability and to
increase relevance of error messages. There are , however , situations in which
it is desirable and necessary to refer to sub—class attributes. The operator

qua and the Inspect statement provide these references.
As the example illustrated, the default qualification level of a

reference variable is determined by its declaration. Thus the qualification

levels of al ph a is Nodes. In order to access the attributes left_eon and
right_son, however, the qualificati~ i level must be Tree_node. The operator

qua is one way of achieving the desired qualification access level. The

expression

alp ha qua Tree_node
refers to the same object as alp ha but at the Tree_node qualification level.
Thus the expression

alp ha qua Tree_node . left _son 



— — —-—------~—~~~~~ —-~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A-25.

is legal and refer, to the desired attribute of alpha. Given the alternative

Nodes declaration for alpha, beta and gcv~na , the four illegal assignments above

may be legally written as follows:

alpha qua Tree_node. left_eon : - beta;

alp ha qua Tree_node. right_eon : - g~tvna;

beta qua Liet_node.next :- new Trae_node(’d ’);

g~~na qua Liet_node.next :- new Liet_node(’e’);
The qua operator may be misused in two ways. One is if the qualified

variable may not legally reference the qualification class. For example, with

the declaration

ref (list_node ) foo ;

the expression

foo qua Tree_node

is illegal. Similarly, if the value of the qualified variable is not an

instance of the qualification class or one of its subclasses, then the

qualification is illegal. For example, after the assignment

alpha :- new Tree_node(’a’)

evaluating the expression

alp ha qua List_node

results in a run time termination error .

Situations often arise where it is only known that the value of a

variable x is an instance of one of some number of classes and it must be

correctly qualified. For example, assume the declaration

ref (Nodes) x,y;

and suppose the value of y is to be assigned either to right_eon of x if x
is a Tree_node or to next of x if x is a List_nods . If x ii neither a

______________  A



A—26.

Tree_nods nor a List_node then an error message is printed.

One solution , using both Is and qua is the conditional statements

If x is Tree_node

then x qua Tree_node .right_eon :- y else

If x is List_node

then x qua Liet_node.next :- y else

outtext (“Error”);

An alternative way of specifing qualification levels, and one

which is particularly useful in situations like this, is to use the inspect

statement.

There are two general forms for the inspect statement. One is:

inspect < object—reference> do < stmt>

which executes the statement < stmt’ as if it were textually within the body

of the object denoted by < object—reference> (without violating protection).

The primary advantage of this form of the Inspect is that attributes of the

<object—reference> may be accessed without the dot notation within<stmt>. The

default qualification of • < object—reference> is assumed within < stat>.

The other form of the inspect statement is:

inspect < object—reference>

when~ < class—name—].> d0 < stmtl>

when <class—name—2> do~ < stmt2>

otherwl se < stmt>

This statement behaves exactly like the construction 

— _ ________ _ _ __ _ _ _ _ _ _ _  .- — - -— ~~~~~~~ —--- -—- — -- .—— ‘- — ---—- -- —---.—- 



V ~~~~~~~~~~~~~~~~~~~~~
- —

~
— - --- - - —-- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A-27.

1f~ < object—reference> In < class—name—i>

then inspect
S
<object—reference> qua < class—name—i> dà < stat—i> else

if < object—reference> In < class—name—2>

then Inspect < object—reference> qua~ < class—name—2> do < stmt> else

else < stat>
The when clauses are examined in order until one is found such that < object—

reference> in < class—name—?> is true. The statement in the do part of that

when clause is then executed as if it were in the body of < object—reference>

at the qualification level < class—name—?> . If < object—reference> is not in

any of the classes then the statement following the otherwise is executed.

Using this second form of the inspect statement, the above conditional
expression may be written much more clearly as;

Inspect x
when Tree_node do right_son : - y

when List_nods do next :- y

otherwise outtext(”Error ”);

~~~~~~~otection
The second application of SIMULA classes is to provide protection for

a group of pr9cedures and variables. The usual Algol scope rules make it very

difficult to insert a set of procedures and variables into someone else’s

Algol program. The result is complicated directions and no security at all.

Typical directions for inserting into a program read something like this;

(1) Insert the following variable declarations in your main block

declarations:
< list of variable declarations>

(2) Insert the following procedure declarations in your main block:

< list of procedure declarations>
(3) Insert the following executable statements before the first

executable statement of your main block :
< list of initialiaation statements>



-~ -~ -~ - - ~~~~~~ -- -~~~~~~~~~ -- ----- -~~~~~~

A—28 .

Users often make mistakes inserting the statements and there is absolutely
no protection from their using any of my variable. or using sub—procedures
the wrong way. Further, they have the complete text before them.

Seperately c~~pi1ed classes solve two of the problems completely.

To make a set of procedures available to others, simply compile a class

declared as follows:

class Foo
begin

< variable declarations>

<pr~~edure declarations>

< initialization statements>

end
(This class declaration may not have global variables.) A user of these

objects inserts the following at the beginning of their programs;

external class Foo;
ref (Foo) x;
x :- new Foo

The procedures and variables that are provided are now referenced by prededing

their names with the string “x”. This solves the problem of initializations ,

accidental references to internal variables and keeps the text of provided

procedures conf idential .

This prefixing of the string “x.” may be avoided by qualifying the entire

program as follows:

external class Foo;
Inspect new Foo do
begin

< remainder of program>
end
It is possible to prevent references to variables and procedures out-

side the class. For ø~nmple, if Foc. is declared

class Lao;
protected a, b, a;
begin

end
then the attributes a, b, a cannot be referenced outside Zoo. Similarly, if

Zoo i. declared

-~~~~~~~ -~~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - --



_ _ . --- ---
~~~~~~~~

.._ -

~~~~~~~

__ -_---

~~,

A-29.

class Zoo
not protected a, b, a;
begin

end
then the only attributes that can be referenced outside a class instance are
a, b , and a. Further, if a variable is protected, read only access can be
provided with a dusmy procedure;

class Zoo;
protected
beg In
integer aa;
Integer procedure a;

a aa;
end

Similarly, references to variables and procedures of a class by a sub-
class can be protected using the keyword hidden as protected was used above.
As a routine security precaution, it is helpful to declare everything that

is not known to be needed elsewhere to both hidden and protected. This has

saved much grief as errors are caught by the compiler or the rtzneime system

rather than by tracing some weird bug.

This mechanism works very well. The only disadvantage is that all of

the external references to attributes of a class are qualified names instead

of simple names. The availability of the inspect qualification of blocks re-
duces the complexity of qualified references but a more general mechanism for
renaming would be helpful. Hoare describes it abstractly in [2).

~~~~~~~~~~ nes

The third use of SINULA classes is for the Construction of coroutines.
In order to use classes for coroutinçs, it is necessary to associate a loca-

tion counter with each class instance or block and to distinguish between two

kinds of class instances. If the location counter of a class instance is

after the last statement of the block the class instance is said to be
terminated and otherwise it is active.

There are three primitives (Call , Detach, Resume) for terminating exe-
cution of a class instance before the last statement of the main block is cx—

— _~~~ — -- ---— .—~~~~~ -~~~ —~~~- - - - -—— - - - A

—-
-

~~~~~

- -- - -—-_ -

~~~~~~~ ~~~

- -

~~~~~

-

~~~~

- --

~~~

_ - 

~~~~~~~~~~~~~~

--- -

~~~~~

-

~~~~~~~~~~~~~~~~~~~

—-

A—30.

ecuted and transferring the processor to another place. The three differ in

the destination of the processor and in the way that responsibility for re-
turning to a higher level procedure or class instance is treated.

At the time when the statement

Call(x);

is executed the value of x must be an active class instance, When it is exe~-

cuted, control passes to class instance x and execution continues using the

location counter of x. In addition, when x terminates execution by either

completing execution of the last statement in the main block or by executing

a Detach, control returns to the statement following the Call.

At the time when the statement

Resume(x);

is executed, the value of x must be an active class instance. This statement

can only be executed in a class instance; it may not appear in the main body
of a program. When the statement is executed the following happens: (1)

The location counter of the class instance in which the resume is executed

is set to the statement after the Resume. (2) Control is transferred to

class instance x and execution continues using the location counter of x.
(3) When execution of is terminated (by executing the last statement of x

or by executing a Detach in x) control returns to the class that initiated the

execution of the class containing the Resume . That is , executing a Resume

transfers the responsibility for returning to its caller to x.
The statement
Detach;

may only be executed in a class instance. Two things happen when it is exe-
cuted. (1) Control leaves the class instance in which the Detach is executed

and its location counter is set to the statement following the Detach~ (2~
Control is returned to the caller of the class instance (or to the inherited

caller) .

~1

A—31.

An example may help.

Main
Program

a b C

+ +
Call(a) Resume(b) Resume(~) Detach

* * *

Figure E4 .l

When the call in the main program is executed,control passes to a at its
location counter (the arrow) and ~ has the obligation of returning to the main
program. When the resume in a is executed , its location counter is set to
the statement after the resume (the *). Execution of b begins at its loca-
tion counter and b has inherited a’s obligation to return to the main program.
Similar things happen when b executes its resume, Execution of 0 begins at

its location counter and a has inherited the obligation to return to the main
program . When a executes its detach, control passes to the statement after
the call in the main program. Of course, the object labeled main program
may itself be a class instance.

The principal restriction associated with the use of classes as corou—

tines is the restriction on context. The referants of global variables in a
class declaration are determined by the location of the class declaration in

the text of the program. Thus, it is not possible to have a dynamic envixon’~
ment without passing the environment to the class instance as a parameter of

the class. This restriction is directly related to the block structure of

Algol.
The earlier discussion of creating class instances may suggest that

new cannot be used to create an active class instance; this is not the case!
When a class instance is created execution of the main block is started~ Jt
may be terminated by executing a Detach and when this Detach is executed the
location counter is set to the statement after the Detach and execution of the
new is terminated.

— --~~~


~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- -

~~~

A-32.

- In SINULA one distinguishes between the declaration of a class and in-

stances of the class. The declaration serves as a template for creating in-

stances of the class. It is possible to distinguish three ways in which an

object becomes accessible in a class: (1) it may be a parameter of the class

and a specific value is assigned when a class instance is created, (2) it

may be declared as local to the class instance or (3) it may be global to
the class and its referent is determined by the static scope rules of Algol—

60.
The declaration of a SIMULA class is the declaration of a data type

(just like integer, real , etc.) and it is possible to declare variables whose
range is objects of this type . These variables may be part of compound names

that are used to refer to objects and attributes of objects~ The only re-

striction on the length of compound names is that an identifier must fit on

a single input line. The power of this naming convention is weakly suggested

by the examples given above.

Each class instance has its own storage for data and a location counter

and , of course , to the code that is the body of the class and its internal

procedures. Execution of a block way be terminated by control reaching the

end of the block instance, or by executing a Detach or a Resume and it may be
continued at a later time by means of a Call or a Resume executed in another
block instance.

REFERENCES

[1) O. —J . Dahl , E.W. Dijkstra and C.A.R . ~Ioare . Structured Progra ing.
Londun and New York, Academic Press, 1972.

[2) C.A.R. Hoare. Proof of Correctness of Data Representations. Acta
Informatica, Vol. 1 (1972), pp. 271—281.

